The Performance and Productivity Benefits of Global Address Space Languages

Christian Bell, Dan Bonachea, Kaushik Datta, Rajesh Nishtala, Paul Hargrove, Parry Husbands, Kathy Yelick

- Titanium: GAS dialect of Java
 - Compiled to native executable
 - No JVM or JIT
 - Highly portable & high performance
- High productivity language
 - All the productivity features of Java
 - Automatic memory management
 - Object oriented programming, etc
 - Built-in support for scientific computing
 - N-D arrays, data types, arrays
 - N-D domain calculus operators
 - Flexible & efficient multi-core arrays
 - High-performance templates
 - User-defined immutable native classes
 - Explicitly unrolled N-D loop iteration
 - Operator overloading
 - Efficient cross-language support
 - Allows for elegant and concise programs

Productivity

- Highly portable & high performance
- Titanium reduces code size and development time
- Language features and libraries capture useful semantics

Global Address Space Languages

- Languages: UPC, Titanium, Co-Array Fortran
- Productivity benefits of shared-memory programming
- Competitive performance on distributed memory
- Use Single Program Multiple Data (SPMD) control
- Fixed number of compute threads
- Global synchronization, barriers, collectives
- Explicit fast one-sided communication
- Individual accesses and bulk copies
- Berkeley implementations use GASNet

GASNet Portability

- Native network hardware support
 - Quadrics QNet (Elan/Elan4)
 - Cray X1 - Gray shmem
 - SGI - SCI
 - IBM - InfiniBand
- Portable network support
 - Ethernet - UDP: works with any TCP/IP
 - MPI 1: portable impl. for other HPC systems
 - Berkeley UPC, Titanium & GASNet highly portable
 - Runtimes and generated code all ANSI C
 - Uses tree-based team reduction library
 - Tunable based on network characteristics

PARALLEL BANDWIDTH OF 512KB MESSAGE FOR 15 PROCESSORS

- Performance is comparable to HPL / MPI
- UPC code less than half the size
- Uses some Berkeley UPC extensions
- All competitive with best MPI versions, even on shared networks

LU Decomposition

- High ratio of computation to communication
- Scales very well to large machines: Top500
- Non-trivial dependence patterns
- HPL code uses two-sided MPI messaging
 - and is very difficult to tune
- UPC implementation of LU uses
 - one-sided communication in GAS model
 - lightweight multithreading atop SPMD
 - memory-constrained lookahead to manage amount of concurrency at each processor
 - highly adaptable to problem size
 - natural latency tolerance
- Performance is comparable to HPL / MPI
 - UPC code runs 10x faster on 2 cores

Conjugate Gradient

- Solves Ax = b for x, where A is a sparse 2-D array
- Computation dominated by Sparse Matrix-Vector Multiplications (SPMV)
- Key communication for 2-D (NAS) decomposition
 - team-sum-reduce-to-all (vector&scalar)
- Need explicit synchronization in one-sided model
 - Uses tree-based teams reduction library
 - Tunable based on network characteristics
- Overlap the vector reductions on the rows of the matrix with the computation of the SPMV
- Outperform MPI implementation by up to 10x

Unified Parallel C

- 3-D FFT with 1-D partitioning across processors
- Computation is 1-D FFT using PSTT library
- Communication is a add-up finalize
- Traditionally a bandwidth-limited problem
- Optimization targeted in GAS languages
- Aggressively overlap transpose with 2-D FFT
- Send more, smaller msgs to maximize overlap
- Pre-target slabs or individual 1-D slabs
- Use low-overhead one-sided communication
- Consistently outperform MPI based implementations
- Improvement of up to 2x even at large scale

Titanium

- Aggressively overlap transpose with 2nd FFT
- All the productivity features of Java
- Titanium: GAS dialect of Java
 - Compiled to native executable
 - No JVM or JIT
 - Highly portable & high performance

Performance

- Immersed Boundary Method Simulation
 - Human Heart
 - Cockcha
- Adaptive Mesh Refinement (AMR)
 - AMR Poisson Multigrid Solvers
 - 2D AMR: Gas Dynamics Hyperbolic Solver
 - AMR with Line Relaxation (row aspect ratio)
- Bioinformatics: Microarray oligonucleotide selection
- Finite Element Benchmarks
- Tree-structured n-body kernels
- Dense Linear Algebra: LU, MatMul

Applications

Armed Forces: Energy Conversion

http://titanium.cs.berkeley.edu

http://gasnet.cs.berkeley.edu

http://upc.lbl.gov