GASNEet: A Portable High-Performance Communication Layer for Global Address-Space L anguages
CS258 Parallel Computer Architecture Project, Spring 2002
Dan Bonachea (bonachea@cs) and Jaein Jeong (jaein@cs)

Abstract

Globa Address Space (GAS) languages are an important
class of paralel programming languages that provide a
shared-memory abstraction to the programmer on
arbitrary hardware. Efficient implementation of GAS
languages (such as UPC) is critically dependent on the
use of low-latency, low-overhead, high-bandwidth
communication systems — unfortunately most low-level
high-performance communication interfaces are highly
vendor and machine specific, which is a serious
impediment to compiler portability. We present the
GASNet communication API, which provides an
expressive and portable interface for high-performance
one-sided communication that can be used as a
compilation target for GAS languages. We have
completed a prototype implementation of the GASNet
APl on MPI, and present initial micro-benchmark
performance results for the prototype — we find that MPI
itself isnot avery suitable target for implementing GAS
languages, but that the performance overheads imposed
by the use of the GASNet APl are minimal.

1 Introduction

Modern parallel architectures can be roughly divided into
two camps based on the programming interface exposed
by the hardware: shared memory systems where parallel
threads of control al share asingle logical memory space
(and communication is achieved through simple loads and
stores), and distributed memory systems where some (but
not necessarily all) threads of control have disjoint
memory spaces and communicate through explicit
communication operations (e.g. message passing).
Experience has shown that the shared memory model is
often easier to program with and reason about, however it
presents serious scalability challenges to hardware
designers and (with afew notable exceptions) distributed
memory machines currently dominate the high-end
supercomputing market (i.e. systems with 100’sto 1000's
of compute processors).

The global-address space model is ahybrid that seeks to
combine the advantages of both models. It offersthe
programmability advantages of a globally shared address
space, but is carefully designed to allow efficient
implementation on distributed-memory message-passing
architectures. UPC, Titanium and Co-array Fortran are

examples of modern programming languages that provide
a global-address space memory model. GAS languages
typically make the distinction between local and remote
memory references explicitly visible to encourage
programmers to consider the locality properties of their
program.

The next section describes the UPC programming
language. Section 2 presents the architecture of our UPC
compiler and the GASNet communication system.
Section 3 discusses the novel support for handler
atomicity provided by the GASNet core API. Section 4
providesinitial performance results for the prototype
GASNet implementation. Section 5 discusses related
work, and we conclude and summarize future work in
section 6.

1.1 UPC

UPC [11] isaparale SPMD superset of the C
programming language. It provides a shared memory
abstraction to the programmer, regardless of the memory
model provided by the underlying hardware. Experience
has shown that in order to design high-performance
parallel algorithms for high-end supercomputers
(especially those with physicaly distributed memory) itis
important to consider the locality properties of the major
data structures and data accesses within the inner loops -
even in the presence of a shared-memory abstraction.
Towards this goal, the UPC memory spaceislogically
divided into a*“ private” area associated with each thread
(and accessible only to that thread), and a shared memory
area (accessible from any thread), as shown in Figure 1.
In addition, al shared memory objects have “affinity” to
a specific thread that will have the fastest possible access
to that object (in a distributed memory system, this means
the object resides in the local memory of the associated
compute processor).

Thread

Tl 1
Thread 0 hread THREADS-1

Shared

Global address space

Private
THREADS-1

Private 0 Private 1

LN

Figure 1: The UPC Memory Model

UPC has language support for paralel data distribution -
arrays in shared memory may have their affinity
distributed across one or more threads (as specified by the
programmer) so a specific subset of the el ements has
affinity to agiven thread. A new parallel loop construct
(upc_forall) alows programmers to easily specify a
collective computation where each thread operates on the
data with affinity to that thread. Finally, thereis language
support for relaxed memory consistency models to enable
aggressive use of non-blocking remote memory
operations that help tolerate network latencies.

UPC isarelatively new programming language (the first
mature specification was standardized in Feb, 2001), and
compiler development efforts are underway at a number
of maor corporations and institutions [26]. With one
notable exception ([21]), all efforts to-date focus on
implementing a monolithic compiler that translates UPC
programs directly to machine code (generaly by
extending an existing C compiler). For example, the first
UPC compiler [6] modified the code-generation phase of
the GNU gcc compiler to implement UPC memory
references on the Cray T3E using the platform-specific E-
registers. The monolithic compiler approach has the
advantage of preserving information gleaned from high-
level language constructs down to the assembly code
level, but has the serious disadvantage that the compiler
must be re-implemented from scratch for each platform
and network architecture. This negatively affects
widespread acceptance of the language and possibly
hinders the portability of applications.

2 System Architecture

The UPC project at NERSC [15] (ajoint effort between
LBL and UC Berkeley, funded in part by the DOE
pmodels grant) is seeking to develop afully-portable,
high-performance UPC compiler that will run on awide
variety of shared-memory and distributed-memory
platforms using different network interconnects,

including large-scale multiprocessors, PC clusters, and
clusters of shared memory multiprocessors. One of the
main goals of the project is to experiment with parallel
compiler optimization techniques, without being tied to a
particular system architecture or network. Portability is
achieved by translating UPC programs to an intermediate
representation in C, which can then be compiled using the
system’s ANSI C compiler and linked to a standardized
runtime system and communication system tailored to the
specific platform.

Figure 2 shows the high-level system diagram for aUPC
application compiled using the NERSC UPC compiler.

The generated C code will run on top of the UPC runtime
system, which will provide platform independence and
implement language-specific features such as shared
memory allocation and shared pointer manipulation. The
runtime system will implement remote operations by
calling the GASNet communication interface, which
provides hardware-independent lightweight networking
primitives.

urcoon]—

Platform-
independent
Network-
independent

Figure 2: High-level system diagram for the UPC/NERSC
compiler

Compiler-
independent

Language-
independent

21 GASNet Design

The primary goal of GASNet isto provide a high-
performance, network-independent communication
interface that can be used as a compilation target for any
global address-space programming language. The
performance goal is an obvious one — programmers
generaly write parallel applications because they care
about performance, and the overall performance of
applications written in GAS languages can be very
sensitive to network performance characteristics
(especially small message latency and overhead).
Unfortunately, most low-level high-performance
communication interfaces are highly vendor and machine
specific - which is a serious impediment to compiler
portability. GASNet abstracts away the network-specific
details to provide a portable, yet still high-performance
interface - a GAS language compiler using GASNet can
be retargeted to a new network system by simply
implementing the GASNet API on the new network.

The design of GASNEet is partitioned into two layersto
maximize porting ease without sacrificing performance:
the lower level isanarrow but very general interface
called the GASNet core API —the design is based heavily
on Active Messages [17], and isimplemented directly on
top of each individual network architecture. The upper
level isawider and more expressive interface called the
GASNet extended API, which provides high-level
operations such as remote memory access and various
collective operations. We' ve written a network-
independent reference implementation of the extended
API purédly in terms of the core API, which alows
GASNEet (and the GAS compiler) to quickly and easily be

ported to a new network architecture by re-implementing
only the minimal core APl. GASNet is structured such
that implementers can choose to additionally bypass
certain functions in the reference implementation of the
extended APl and implement them directly on the
hardware to improve performance of specific operations
when hardware support is available (e.g. specia network
support for puts/gets or hardware-assisted broadcast).

The complete GASNet specification we created is
included as Appendix A, however the highlights will be
presented here.

2.2 GASNet Core API

The GASNet core API is anarrow interface based on the
Active Messages (AM) paradigm [28], which is general
enough to implement everything in the extended API. The
AM 2.0 specification [17] was a starting point for the
design — however, we' ve stripped out many of the
extraneous complexities (e.g. multiple endpoint support,
explicit trandlation management) which areirrelevant in
the context of a SPMD global-address space
communication system. We' ve also extended the
interface somewhat by adding support for 64-bit
architectures and mechanisms for explicit handler
atomicity control (see section 3). Finally, the core API
includes direct support for SPMD job bootstrapping and
layout queries, a feature often omitted or overlooked in
low-level communication interfaces that generally leads
to lots platform-specific or even site-specific
bootstrapping code in the client.

Active Messagesis basically alow-level super-
lightweight RPC mechanism — it provides unordered,
reliable delivery of matched request/reply messages that
are serviced by user-provided lightweight handlers, which
run quickly and to completion to integrate communicated
data into the ongoing computation. All active messages
may carry asmall number of integer arguments to the
user-provided handler. Additionally, “medium”-sized
active messages carry a payload of opagque data made
available to the handler in atemporary buffer, and “long”-
sized active messages carry a DMA transfer of datathat is
transferred to alocation specified by the sender before the
handler runs. AM implementations are available for a
number of network architectures (Via, Myrinet, MPI,
LAPI, UDP, etc.), and the AM paradigm has strongly
influenced the design of anumber of other network
interfaces (e.g. LAPI, GM).

Native AM implementations on high-performance
networks are usually implemented as a purely user-level
communication system to maximize latency performance,

and we expect the same will be true for GASNet core
implementations. A variety of message receipt and
servicing paradigms are provided by modern high-
performance network hardware, however AM 2.0 requires
handlers to run in a polling-based manner, that is,
handlers for pending messages run synchronously on the
compute thread during callsto AM_Poll() or other AM
message send operations. Our GASNet core API relaxes
this requirement and allows core implementors to select
the message handling technique most appropriate for the
given network. Examples of alternative message
reception techniques include: using hardware interrupts to
interrupt the computation thread (especialy useful for
systems that support fast user-level network interrupts,
such as the J-machine [10]), combinations of interrupts
and polling (such as the Polling Watchdog [18]), keeping
aprivate, asynchronous communication thread which
performs all message reception and handler execution
(similar to LAPI’s completion thread [12]), and more
exotic alternatives such as dedicated NIC processors
capable of running arbitrary handler code (similar to the
FLASH multiprocessor [14]). One consequence of this
flexibility is that the core must provide additional
mechanisms to enabl e the implementation of AM
handlers that atomically update critical data structures —
thisissueis discussed further in section 3.

Most clients will use calls to the extended API functions
to implement the bulk of their communication work
(thereby ensuring optimal performance across platforms).
However, the client is also permitted to use the core AM
interface to implement non-trivial language-specific or
compiler-specific communication operations which
would not be appropriate in alanguage-independent API
(e.g. implementing distributed language-level locks,
distributed garbage collection, collective memory
allocation, etc.). Experience has shown that AM is
genera enough to express most or all of the
communication patterns desirable in implementing GAS
languages — therefore in addition to the portability
benefits, the avail ability of the core API also provides a
nice extensibility mechanism to accommodate unforeseen
future communication needs.

2.3 GASNet Extended API

The GASNet extended API isarichly expressive and
flexible interface that provides high-level one-sided
remote memory get/put operations and collective
operations (basically any primitive that would be useful
for implementing a GAS language that we could imagine
being implemented using hardware support on some
NICs).

The remote memory operations in the GASNet extended
APl were designed to support awide variety of usage
scenarios to facilitate experimentation with parallel
compiler optimizations. They include simple blocking
gets/puts, and two flavors of non-blocking data transfers.
Explicit-handle non-blocking operations (“nb” suffix)
return a handl e representing the operation in-flight, and
must later be completed by passing this handle to an
explicit-handle synchronization function (there are
functions for synchronizing on a particular handle, or a
specific list of handles). Implicit-handle non-blocking
operations (“nbi” suffix) do not return ahandle, and are
completed using generic synchronizations functions that
synchronize on the completion of all the current thread’s
outstanding implicit-handle puts, gets, or both. Access
region synchronization provides a mechanism for
associating asingle explicit handle with al the implicit-
handle operations initiated during a given time interval .
Every synchronization function supports polling or
blocking for completion. All of the data transfer functions
provide memory-to-memory transfers, and many also
provide register-to-memory or memory-to-register
transfers, to avoid forcing data to pass through local
memory on architectures that support remote memory
gets/puts directly to/from registers (such as the Cray
T3E). Remote memory addresses are expressed using a
tuple of (node rank, virtual address), and all the
operations in the extended and core API support
|oopback®.

The only collective operation currently provided in the
extended API is anamed split-phase barrier, although we
plan to extend this list to include other operations such as
broadcasts, reductions, scan etc. in the near future (we are
waiting on a new version of the UPC specification which
will incorporate these features at the language level).

The extended API interface is meant primarily as alow-
level compilation target, not alibrary for hand-written
code - as such, the goals of expressiveness and
performance generally take precedence over readability
and minimality. Implementors for NIC's that provide
some hardware support for higher-level messaging
operations (e.g. support for servicing remote reads/writes
on the NIC without involving the main CPU) are
encouraged to implement an appropriate subset of the
extended API directly on the network of interest
(bypassing the core API) to achieve maximal
performance for those operations (but thisisan

! Although in many cases the loopback cutoff will likely occur at a
higher level, in the GAS language runtime system.

optimization and is not required to have aworking
system).

3 Handler Atomicity

Traditional AM 2.0 implementations are purely polling-
based, meaning that all handlers run synchronously on the
main thread of computation during callsto AM_Poll() or
the message sending functions. Handlers must run to
completion and are never permitted to make blocking
calls (such aslock acquire) to prevent deadlocking the
system. Therefore, the only way to achieve atomicity
within AM 2.0 handlers (for example, to atomically
update a shared data structure) isto only make AM calls
from asingle application thread and only while holding a
lock that also protects al the data structures that may be
accessed by handlers — the synchronous nature of handler
dispatch then ensures al handlers will run atomically
with respect to each other and the main threads of
computation that may be modifying the data structuresin
question. This approach works but greatly limits the level
of concurrency possible in the system (especially in the
presence of multiple processors) because it over-
synchronizes the handlers (enforces atomicity even when
it is not required), and creates a bottleneck between
application threads on the single lock that protects all
handl er-accessible data structures and the network.

GA SNet relaxes the restrictions on handler dispatch to
allow interrupt-based handlers and other more general
message reception techniques. In GASNet, core handlers
may run asynchronously with respect to all application
threads, and they may run concurrently with each other
on separate threads — the only restriction is that handlers
are not interruptible (that is, any given thread will be
running at most asingle handler at atime and will never
be interrupted to run another handler). The fully
asynchronous nature of handlersimpliesthat even the
non-optimal trick described above isinsufficient for
achieving handler atomicity under GASNet. Therefore,
GASNet core provides two (related) mechanisms to make
handlers safe and provide atomicity when required: No-
Interrupt Sections ensure signal safety of handler code for
GASNet implementations using interrupt-based
mechanisms, and a Handler-Safe Locks allow atomic
updates from handlers to data structures shared with the
client threads and other handlers.

3.1 Theproblem

Figure 3 illustrates one of the basic problems of why it
can be unsafe for handlers to block for lock acquisition.
With interrupt-based handler dispatch, there’s nothing to
prevent such a handler from running in the context of a

thread that was interrupted while holding the same lock.
This situation would cause system deadlock because the
handler will block forever waiting for the outer critical
section to release the lock, but this cannot happen because
the handler interrupt is preventing that critical section
from making progress. A similar problem arises under
polling-based handler dispatch if the application thread
attempts to poll or send messages (which implies polling)
from within a critical section — under this scenario, the
handler runs synchronously with respect to the
application thread, but the potential for deadlock remains.

App. Thread

Async
Interrupt
\ AM Handler

DEADLOCK

Time

Figure 3: Why interrupt-based handler s cause problems
in the presence of locks

A different, but closdly related problem occurs with
library callsin the presence of interrupt-based handler
dispatch, where handlers may interrupt acall to a non-
reentrant library function from the main application
thread. If the handler then attemptsto call the same
library function, the internal library data structures are
likely to become corrupted. This problem is analogous to
the problem of calling library functions from within
UNIX signal handlers (in fact, interrupt-based GA SNet
cores are likely to use signals to interrupt the main
computation and run handlers). Note that even most
"thread-safe" libraries are unlikely to also be reentrant,
and will break or deadlock if called from ahandler
interrupt by the same thread currently executing a
different call to that library in an earlier stack frame. One
specific case where thisislikely to arisein practiceis

calls to malloc()/freg(), which may be used by handlersto
perform more sophisticated, multi-message data transfer
operations (such as scatter-gather).

3.2 No-Interrupt Sections

To overcome the problem of interrupts during non-
reentrant library calls, and permit our handlers to be more
useful, the GASNet core alows the client to temporarily
disable interrupt-based handler execution on a specific
thread. All calls to non-reentrant functions that could
possibly access state shared by functions also called from

5

handlers must be called within a GASNet "No-Interrupt
Section":
gasnet _hol d_interrupts();

some_nonreentrant _library_call(.);
gasnet _resune_i nterrupts();

GASNet guarantees that no handlers will run
asynchronously on the current thread within the No-
Interrupt Section. The no-interrupt state is a per-thread
setting, and GASNet may continue running handlers
synchronously or asynchronously on other client threads
or private GASNet threads. Specifically, a No-Interrupt
Section does not guarantee atomicity with respect to
handler code, it merely provides away to ensure that
handlers won't run on a given thread from inside a call to
anon-signa-safe library. Thisis a change from other
systems (such as von Eicken’s original AM-1
implementation [28] and Alewife stwo-case delivery
system [16]) that completely disable all hardware network
interrupts to achieve atomicity — GASNet relaxes this
restriction to support more concurrency on SMP nodes
where we may safely continue taking interrupts and
running handlers on other threads.

The GASNet core implementation guarantees the client
that handlers will not run asynchronously within a No-
Interrupt Section, but it isthe client’s responsibility to
never call GASNet functions within the section that could
cause handlers to execute synchronously?®. No-interrupt
sections also have the potential to reduce node
responsiveness to the network, so there is a set of
conventions restricting client code behavior within a No-
Interrupt Section:

Code in a No-Interrupt Section must not call any
GASNEet functions that may send requests or
synchronously run handlers

hold/resume should not be called from within a
handler context - handlers are run within an implicit
No-Interrupt Section

Code in aNo-Interrupt Section must never block or
spin-wait for an unbounded amount of time,
especially when awaiting aresult produced by a
handler (could cause deadlock)

No-Interrupt Sections should only be held "briefly" to
avoid starving the network (could cause performance
degradation, but should not affect correctness). Very
long No-Interrupt Sections could cause some GA SNet

2 Thisis not actually a problem for reentrancy safety, but it isan
issue for Handler-Safe Locks, described in the next section.

implementations employing timeout-based

mechanisms to fail (e.g. remote nodes may decide this

node is dead and abort the job).

* No-Interrupt Sections may not be nested (for
implementation convenience and efficiency)

GASNet core implementations that never use interrupts to

run handlers can implement hold/resume as no-ops —this
Is good because the application threads may be calling
hol d/resume operations with some frequency and
therefore they should be optimized for low overhead.
Cores that use interrupt-based dispatch only need to
ensure that handlers never run on athread that isin the
interrupts-disabled state — one naive way to implement
thisisto disable all hardware interrupts while any thread
has interrupts disabled, but this requires some
coordination between threads and there may be non-
trivial overheads associated with disabling/enabling
interrupts on the NIC (for example, each transition may
involve akernel call and/or a system bus transaction).

A more clever way to implement interrupt hold/resume
for cores with interrupt-based handler dispatch isto use a
multi-threaded extension of von Eicken’sinterrupt
handshake [29] — basically, the core keeps two bits of
state in memory for each application thread: an
interruptsDisabled bit and a messageArrived bit. The hold
operation merely clears the messageArrived bit and sets
the interruptsDisabled bit (can be done with asingle
memory write to alocation which islikely to be cached).
The interrupt handler aways checks the
interruptsDisabled bit for the current thread before
running handlers, and if it happensto be set it merely sets
the messageArrived bit (to indicate a missed interrupt)
and exits. The resume operation clears the
interruptsDisabled bit, and if the messageArrived bit
indicates an interrupt was missed it synchronously polls
the network to service any number of waiting messages.
This allows usto temporarily defer incoming messages
during the No-Interrupt Section.

Because the No-Interrupt Section is meant to be very
short in real-time, the expected common case is that no
message interrupts will arrive during that interval -
however even if they do, the messages won't be deferred
for very long (i.e. no longer than until the end of the No-
Interrupt Section). On many implementations (where the
NIC isadedicated application resource) it may be
perfectly acceptable to |eave the messages in the

incoming hardware FIFO queue during thisinterval®.
Also note that nothing prevents other threads in a multi-
threaded client or core implementation from
synchronously servicing the messages that caused the
interrupt — thisis good because other threads which are
spin-waiting for a network result won't have their
observed |latency affected by the fact that a different
thread may be inside a No-Interrupt Section.

3.3 Handler-SafeLocks

In order to support handlers that need to atomically
update data structures accessed by the main-line client
code and other handlers, the GASNet core provides the
Handler-Safe Lock (HSL) mechanism. As the name
implies, these are a specia kind of lock, which are
distinguished as being the only type of lock that may be
safely acquired from within a handler context. All lock-
protected data structures in the client that need to be
accessed by handlers should be protected using an HSL
(i.e. instead of a standard system lock). Theinterface to
HSL'sissimilar to the POSIX mutex interface—HSL's
can be allocated statically or dynamically, and there are
lock() and unlock() functions (although no trylock()).

Similar to No-Interrupt Sections, thereis a set of coding
conventions that restrict the usage of HSL’s, which
alows them to be deadl ock-free when acquired from
handlers. The basic ideais that we enforce a No-Interrupt
Section over any thread holding at |east one HSL (to
prevent the execution of synchronous or asynchronous
handlers that may try to acquire the same HSL, leading to
deadlock asillustrated in figure 3), and we require that
HSL’s always be held for a*“bounded” amount of time, so
that handlers which are blocking to acquire an HSL
currently held by a different thread are guaranteed to only
block for bounded amount of time;

» Code executing on athread holding an HSL is
implicitly within a No-Interrupt Section, and must
follow all the restrictions on code within a No-
Interrupt Section (see above). hold/resume must not
be explicitly called while holding an HSL

* Any handler which locks one or more HSL's must
unlock them al before exiting or sending areply

The next two restrictions are not necessary for safety, but
are added to help maximize efficiency of the
implementation:

3 Systems where the network must be continually serviced to ensure
system progress (e.g. where the same network carries cache
coherency messages) may require temporarily buffering user
messages during thisinterval.

» HSL'smay not be locked recursively, although it is
permitted for a thread to acquire more than one HSL*.

* HSL'smust be unlocked in the reverse order they
were locked (e.g. lock A; lock B; ... unlock B; unlock
A; islegal - reversing the order of unlocksis
€rroneous)

Handler-Safe Locks safely provide explicit atomicity
control to AM handlers, even in the presence of interrupt-
based and/or multi-threaded concurrent handler servicing
policies. Most importantly, they don’t over-synchronize
AM handlers and only provide the necessary level of
atomicity (which is good because most critical path AM
handler probably do not need atomicity). Finaly, the
opaque HSL’ s can be implemented very efficiently using
asimple system lock and a small amount of additional
state (the exact state information required is based on the
specific policies of the given core implementation).

The safety of HSL’ sreally comes from the set of
restrictions governing their usage. We only expect
experienced language implementors to be writing AM
handlersand using HSL's, so it is reasonabl e to impose
such usage conventions on HSL’s. However in the
interests of assisting these implementors, our prototype
GASNet core implementation includes a debugging mode
that adds extra runtime checks to detect if any of the
usage conventions on No-Interrupt Sectionsor HSL's are
violated, thereby eagerly enforcing the conditions which
provide deadl ock-freedom, rather than relying on testing
to actually deadlock the system and then debug what
violation led to the problem.

4 Results

To evauate the effectiveness of GASNet, we
implemented a prototype GASNet core as a wrapper
around AMMPI [1], aportable AM 2.0 implementation
over MPI. The prototype uses our unmodified reference
implementation of the extended API. The portability of
MPI (and AMMPI) means this entire GASNet
implementation istrivially portable, and we were able to
run performance experiments on an IBM SP system and a
Linux-x86/Myrinet cluster (Millennium) merely by
changing the Makefile. Because AMMPI issimply a
trandation layer between AM and MPI and not a native
implementation of AM, we don’t expect stellar absolute
performance results — however, we can still examine the

* However, the traditional cautions about the possibility of deadlock
in the presence of multiple locks still apply - the common solutionis
to define atotal order on locks and always acquirethemin a
monotonically ascending sequence.

overheads imposed by using the GASNet extended API
rather than AM. We started with this fully portable
GASNet implementation so we could evaluate the
GASNEet interface design and have a prototype
implementation that runs anywhere.

4.1 Methodology

We ran two micro-benchmarks (a* ping-pong” test and a
“flood” test) to evaluate the communication performance
of GASNet in terms of round-trip latency time, bandwidth
and message inverse throughput. The testswere al run
between two nodes (an active sender and a passive
receiver who is continually polling the network) and the
test codeis summarized in figures 4 and 5.

In the ping-pong test, the sender sends a get or put request
and waits until the receiver acknowledges the request and
the operation completes. Round-trip latency is the time
from before the initial get/put request to after the
operation is complete. A blocking get/put operation
naturally represents the round-trip pattern, asit returns
control to the client only after the acknowledgement has

REQ

Latency
ACK

Roundtrip Latency
Tota

Time Total Time
. —
> # Iterations
Blockin Non-blocking Non-blocking
9 with explicit handle with implicit handle
gasnet_get(...) h = gasnet_get_nb(...) gasnet_get_nbi(...)
gasnet_get(...) gasnet_wait_syncnb(h) gasnet_wait_syncnbi_all()
h = gasnet_get_nb(...) gasnet_get_nbi(...)
gasnet_get(...) gasnet_wait_syncnb(h) gasnet_wait_syncnbi_all()
H = gasnet_get_nb(...) éa.snet_get_nbi(.)
gasnet_wait_syncnb(h) gasnet_wait_syncnbi_all()

Figure 4: M essage and synchronization pattern for

ping-pong test

Inverse Throughput

‘rwﬂ-hu%
RE(

Total Time

gasnet_wait_syncnb(h, n)

Total Q’ # Iterations
Time e Bandwidth
° Msg Size x #lterations
} B Total Time
Blockin Non-blocking Non-blocking
9 with explicit handle with implicit handle

gasnet_get(...) h[0] = gasnet_get nb(...) | gasnet_get_nbi(...)
gasnet_get(...) h[1] = gasnet_get nb(...) | gasnet_get_nbi(...)
gasnet_get(...) | hin1] = gasnet get nb(...) | gasnet_get nbi(...)

gasnet_wait_syncnbi_all()

flood test

Figure 5: M essage and synchronization pattern for

been received. Non-blocking get/put operations are
completed using an appropriate synchronization operation.
We expect non-blocking operations performs to perform
similarly to blocking operationsin this test since they

each entail anetwork round trip and the only potential
difference is the software overhead on the sender. We test
both variations of non-blocking operations (explicit
handle and implicit handle) to fully explore the
performance overheads.

In the flood test, the sender sends alarge number of
overlapped get/put requests and synchronizes all of them
at the end with a single synchronization operation. This
test is useful in revealing the maximum achievable
bandwidth of the communication system (expected to be
best for larger messages), and the inter-message issue
time (inverse throughput) for small messages, an
important performance characteristic for GAS languages.
Note that we expect the bandwidth and inverse
throughput reported for the blocking get/put operationsin
the flood test to be poor because the blocking functions
don’'t allow any communication/communication overlap.

We amortized the timer overhead and granularity by
running each communication test repeatedly (10,000
times) in atimed loop and dividing the total time by the
number of iterations to calcul ate the average time per
operation, as shown in figures 4 and 5.

Latency (IBM SP)
70

65 1 * ‘
" /X
60 +—X X X KT—r blocking get
5 —&— blocking put
2 —&— non-blocking get
50 —©— non-blocking put
—X— AMMPI
45 MPI
40 ; . , —1+
T T T - T
35 i
1 2 4 pytes 8 16 32

Latency (Millennium)
45

ol X X % X x—X
—<&— blocking get
4 —&— blocking put
35 —#&—non-blocking get ||
—©— non-blocking put
—¥— AMMP|
—+—MPI
30 — - - —
25 f
1 2 4 bytes 8 16 32

Figure 6: Round-trip ping-pong Latency

4.2 Operations measured

We measured the performance of various important
GASNet extended API functions, including blocking
transfers and non-blocking operations with explicit
handles and implicit handles. We also measured the
performance of AMMPI and MPI for reference since our
prototype GASNet implementation is based on AMMPI
(which runs over MPI).

Experiments showed that the two variations of non-
blocking operations (explicit and implicit handle)
performed nearly identically in all cases. The two
variations provide different synchronization paradigms to
the client code and are implemented somewhat differently
in the extended API, but apparently the differences don’t
cause a noticeable change in performance - therefore we
represent the two variations as a single entity in the
following figures.

4.3 Latency Results

The ping-pong round-trip latency results are presented in
table 1 and figure 6 (note the y-axis does not start at zero).

Non-
blocking
put

Non-
blocking
get

68.7
43.3

Blocking
oet

Blocking

AMMPI
put

(us) MPI

IBM SP 68.1

43.7

67.2
43.7

67.1
43.9

60.0
41.0

39.1
28.4

Millennium

Table 1: Round-trip Latency for 1-byte message

The round-trip latencies for al the extended API
operations are very similar. This was expected because
non-blocking operations are synchronized in the same
way as blocking operations in the ping-pong test.

The GASNet gets and puts had a small additional
overhead over AMMPI (around 7 us extrafor the IBM SP
and 2 us extrafor the Millennium cluster). AMMPI had a
much higher latency than MPI, and the gap between the
two (around 21 us for the IBM SP and 13 usfor the
Millennium cluster) is due to the buffering that takes
place in AMMPI as adirect result of the semantic
mismatch between Active Messages and MPI.

4.4 Bandwidth Results

The flood bandwidth results are presented in table 2 and
figure7.

Non-
blocking
put

Non-
blocking
get

161.2

Blocking
oet

Blocking

AMMPI
put

(MB/sec) MPI

IBM SP
Table 2: Bandwidth for 128K B messages (networ k depth = 8)

117.6 110.3 159.0 159.3 242.4

For analysis purposes, we use the results from the IBM
SP (the bandwidth results from Millennium had alarge
variance and are somewhat inexplicable).

The most important parameters dictating bandwidth
performance are message size (in bytes) and network
depth (aka queue depth - the number of outgoing
messages that may be queued without blocking).
Bandwidth generally increases with message size and we
find it reaches a saturation point at around 128 KB.
Finding the optimal network depth for a particular
network requires some experimentation - if network depth
Is set too small, bandwidth drops quickly for large
messages (dueto alossin
communication/communication overlap which implies
idle network cycles). Setting the network depth too high
causes the bandwidth of small messages to drop due to
increased cache miss penalties on the network buffers.
We report results for a network depth of 8 on the IBM SP
and 16 for Millennium.

3 Bandwidth (IBM SP, network depth = 8)
=
250
—+—MPI
—¥— AMMPI

—2A—non-blocking get
—©6— non-blocking put
—&—blocking get
—&8— blocking put

200 +—

© GV oF @ a0 A
SHRC AR P PR

S SO S S, A e @%y‘ es
g . . .
= Bandwidth (Millennium, network depth = 16)
=
100
9 l| =—+—MP
—¥%— AMMPI m
80 1 —2&— non-blocking get H
70 1| —©—non-blocking put ,|/|'
—&—blocking get M /l‘/
60 1

—— blocking put S
50 /
40

U S S A)
[N D SO A
R S S GRS

e

SV ™ > © 2

o' Q' ©) QA
W % N\ o QS

SR A

Figure 7: Flood Bandwidth

The bandwidth performance of the GASNet non-blocking
operations closely matches the AMMPI bandwidth
performance (e.g. about 160 MB/sec for 128 KB
messages). The bandwidth graph also shows the expected
benefits of non-blocking I/0 in aflood test that allows

communication/communication overlap (160 MB/sec vs.
114 MB/sec for 128 KB messages). As expected, the
bandwidth of GASNet and AMMPI are still lower than
that of MPI (242 MB/sec).

45 Inverse Throughput Results

The inverse throughput results are presented in table 3
and figure 8.

. . Non- Non-
(us) Blocking | Blocking blocking | blocking AM- 1 iy
get put MPI
get put
SP Inv.
Throughput 78.5 78.6 28.8 28.9 28.9 7.6
Latency 68.1 67.2 68.7 67.1 60.0 39.1
Mill Inv.
Throughpt 56.3 55.8 18.2 17.8 17.7 10.7
Latency 43.7 43.7 43.3 43.9 41.0 28.4

Table 3: Inverse Throughput for 1-byte messages

Inv. Throughput (IBM SP, network depth = 8)

180
160 4 —&— blocking get ’
—— blocking put /
140 +-+ —©—non-blocking get
—2&— non-blocking put /
120
—¥— AMMPI
[%)
g +

60 |
0 IM
et

20 o+

1
v I

0 T T T
16 32 64 128 25Byte512 1024 2048 4096
1§O Inv. Throughput (Millennium, network depth = 16)
160 - /
——get_hulk
140 1 —m—put_buik
120 H —A—get_nb_bulk /
100 —©6—put_nb_bulk
80 f{ —+—wmPl

—X*—AMMPI
60 1
40
20 ;

16 32 64 128 25Byte512 1024 2048 4096

Figure 8: Inverse Throughput (flood)

The inverse throughput results show the GASNet non-
blocking get/puts performed similarly to AMMPI but no
better than MPI - much like the bandwidth results. These
results confirm that non-blocking operations have higher
bandwidth than blocking operations in aflood test
because they can send requests (and therefore data) at a
higher rate. The inverse throughput is an indication of
inter-message issue time. Previous results[2] for MPI on
these platforms show thisissue time is dominated by

synchronous software overheads on the sender for small
messages (rather than network gap). If we assume the
message send overheads are similar on the replying node,
we can subtract two inverse throughput times from the
round-trip latency to discover that about 10 us on the SP
and 8 us on Millennium are being spent outside the
message send overheads. The previous results indicate
that about half of these times are due to true, non-
overlapped hardware wire latency, and the other half is
due to message receive overhead which is not overlapped
with anything else. M essage send overheads are therefore
the primary limiting factor in network performance on
these systems. Previous results on the performance of the
native GM layer on Myrinet indicate the send and receive
software overheads are considerably lower than under
MPI, which is compelling evidence that a future, native
GM-based GASNet core implementation will perform
considerably better than our AMMPI-based GASNet
prototype and MPI itself (work is already underway on
such a system to verify thisclaim).

46 Summary

Overdl, GASNet performed much as we expected -
specifically, the bandwidth and throughput performance
were comparabl e to those of the underlying AM
implementation. The round-trip latency was alittle longer
than that of AMMPI, but we believe this can be improved
with further tuning. As expected, the absolute
performance was lower than MPI and this is mostly
attributable to AMMPI. Because GASNet exhibits low
performance overhead over the underlying AM
implementation, we expect that native implementations of
the GASNet AM core will lead to excellent performance
for the GASNet extended API operations.

5 Redated Work

The language design of UPC was influenced by three
previous research languages: Split-C [9], PCP [4] and AC
[5], and is akin to other global-address space languages
such as Titanium [30,25] and Co-Array Fortran [24,7].

Titanium isa parallel Javadiaect that also supports a
global address space memory model similar to UPC. The
current Titanium compiler uses an implementation
strategy similar to the NERSC UPC compiler, where
programs are translated to intermediate C code and then
compiled to machine code using a vendor-provided C
compiler. Once our initial GASNet implementations are
complete, we plan to add a GASNet backend to Titanium
that will allow the language to a so leverage future
implementations of GASNet on various architectures.
One of our goalsin designing the GASNEet interface was

to provide alanguage-independent interface to make this
reuse possible.

Our work on the GASNet core APl was strongly
influenced by Active Messages [17,28], and we carefully
considered the capabilities of existing light-weight
communication systems which are potential
implementation targets for the GASNet API, such as
IBM’s LAPI [12], Myricom’s GM [22] and
Vidlnfiniband [13,27].

MPI [20] is awell-established and standardized message-
passing communication library that shares GASNet’s
goals of portability and high-performance in support of
paralel programming. Unfortunately, there is a semantic
mismatch between the one-sided get/put operations that
are the critical primitives when implementing GAS
languages and MPI’ s two-sided matched message
send/recv operations, and this mismatch leads to
performance degradation when attempting to implement
one over the other. Additionally, MPI implementations
have traditionally been tuned for high-bandwidth
blocking message send/recv [2], whereas GAS languages
typically require low-latency and low-overhead non-
blocking operations. The MPI 2.0 standard [19] adds a
“one-sided” communication interface that attempts to
address some of these issues, but as discussed in [3] this
interface has several problems that make it inadequate for
the task of implementing GAS languages.

6 Conclusionsand FutureWork

GASNet is a powerful interface that provides portable,
high-performance communication primitives useful in
implementing global address-space languages. The two-
level interface design allows rapid prototyping by
implementing only the narrow GASNet core API, but
allows further tuning through the direct implementation
of selected operationsin the extended API. Handler-Safe
Locks provide safe (deadl ock-free) explicit atomicity
control for handlers, even with GASNet core
implementations that run handlers using interrupts and/or
concurrently on different threads. No-Interrupt Sections
provide a cheap mechanism to prevent reentrancy errors
in library functions called by handlers run by interrupt-
driven GASNet core implementations. The absolute
performance of the AMMPI-based GASNet prototypeis
not stellar (primarily because the MPI is not a good match
for implementing global -address space languages — there
is a semantic mismatch between one-sided, non-blocking
get/put accesses and two-sided message send/recv).
However, the relative performance of the GASNet

10

operations compared to AMMPI is promising, and we

expect that GASNet will perform very well with a native
GASNet core written and tuned for a particular network.

A good deal of work will take place on GASNet in the
coming months as the NERSC UPC compiler

development project progresses and we start expanding to

various networks. We expect to implement GASNet
natively on the following networks in the near future:

IBM SP (LAPI), Myrinet (GM), Quadrics (ELAN), Cray

T3E, Infiniband/VIA and possibly even Ethernet/UDP.

We may aso tune the AMMPI-based GASNet prototype
implementation to achieve better performance on specific
platforms (AMMPI has never been extensively tuned). As

the compiler progresses, we a so expect to augment the
extended API with other useful operations, specifically
collective communication support (e.g. broadcast,

reduction, scan), and more sophisticated memory access

operations (e.g. strided, scatter/gather). Finally, we plan

to encourage other GAS languages to start using GASNet

as a shared high-performance compilation target. If this
effort is successful, we may even be able to convince
high-performance network vendors to start providing
GASNet implementations of their own, much like they
currently do for MPI (afew vendors have already
expressed an interest). Thiswould help with our genera
goal of influencing network vendors to tune their
hardware and software for low-latency, low-overhead
communication rather than focusing primarily on peak
bandwidth.

7 Bibliography

AMMPI home page
http://www.cs.berkel ey.edu/~bonachea/ammpi/index.html

2. Beéll, Bonaches, et a. “An Evaluation of High-Performance
Networks as a Compilation Target for Global Address-Space
Languages’, submitted to Super Computing 2002.

3. Bonachea, “The Inadequacy of the MPI 2.0 One-sided

Communication API for Implementing Parallel Global Address-

Space Languages’
http://www.cs.berkel ey.edu/~bonachea/upc/mpi 2.html

4. Brooks, E. D. IlI. “PCP: A Parallel Extension of C That is 99%
Fat Free.” Technical Report UCRL-99673, Lawrence Livermore

National Laboratory, Livermore, CA, 1988.

5. Carlson, William and Draper, Jesse, “Distributed Data Accessin

AC”, Proceedings of the Fifth ACM SIGPLAN Symposium on

8.

10.

11.

20.

21.
22

Principles and Practice of Parallel Programming (PPOPP), July,

1995, p39-47.

6. Carlson, William. UPC f or the Cray T3E.
http://www.super.org/upc/,
ftp://ftp.super.org/pub/UPC/current/upctr.ps

7. Co-array Fortran web page. http://www.co-array.org/

29.

30.

11

Culler, D. et a., “Generic Active Message Interface
Specification v1.1", U.C. Berkeley Computer Science Technical
Report, Feb 1995.

Culler, David et al. “Parallel Programming in Split-C”,
Proceedings of Supercomputing ' 93, Nov 1993, p262-273.
Dally et a., "Architecture of a message-driven processor”.

Proceedings of the 14th Annual International Conference on
Computer Architecture (ISCA), 1987.

El-Ghazawi, Tarek, Carlson, William and Draper, Jesse. “UPC
Language Specifications, v1.0", Feb 2001.

. IBM LAPI web documentation

http://www.research.ibm.com/actc/Opt_Lib/LAPI_Intro.htm

. Infiniband web page http://www.infinibandta.org
. Kuskin et a., "The Stanford FLASH multiprocessor",

Proceedings of the 21st Annual International Symposium on
Computer Architecture (ISCA), 1994.

. LBL-UC.Berkeley UPC Compiler Devel opment Effort.

http://upc.nersc.gov/

. Mackenzie, Kubiatowicz, et al. “Exploiting Two-Case Delivery

for Fast Protected Messaging”, Proceedings of the Fourth
International Symposium on High-Performance Computer
Architecture, February 1995.

. Mainwaring, Alan and Culler, David “ Active Messages:

Organization and Applications Programming I nterface.”, UC
Berkeley Tech Report 1995.
http://now.CS.Berkeley. EDU/Papers/Papers/am-spec.ps

. Maguelin, Olivier, et a. "Polling Watchdog: Combining Polling

and Interrupts for Efficient Message Handling", the 23rd Annual
International Symposium on Computer Architecture, May 1996.

. MPI 2.0 Specification http://www.mpi-forum.org/docs/mpi-

20.ps

MPI 1.1 Specification http://www.mpi-forum.org/docs/mpi-
11.ps

MuPC UPC Runtime System web page http://www.upc.mtu.edu/

Myricom, Inc. “The GM Message Passing System”,
http://www.myri.com/scs GM/doc/gm.pdf

. Nieplocha, Jarek and Carpenter, Bryan. “ARMCI: A Portable

Remote Memory Copy Library for Distributed Array Libraries
and Compiler Run-time Systems”, 1999.

. Numrich, RW. and J.K. Reid. “Co-Array Fortran for parallel

programming.” Fortran Forum, volume 17, no 2, 1998.

. Titanium web page http://Titanium.cs.berkeley.edu
. UPC web page. http://upc.gwu.edu/
. Virtua Interface Architecture Specification

http://www.viarch.org/

. von Eicken, Thorsten, Culler, David, et a. “Active Messages. a

Mechanism for Integrated Communication and Computation”,
19th International Symposium on Computer Architecture, 1995.

von Eicken, Thorsten. “Active Messages. an Efficient
Communication Architecture for Multiprocessors’, Ph.D Thesis,
1993.

Yelick, et a.” Titanium: A High-Performance Java Dialect”,
ACM 1998 Workshop on Java for High-Performance Network
Computing, Stanford, California, February 1998.

Appendix — The GASNet Specification

GASNet Specification, Version: 0.4
Sel ected portions adapted from

- AL Mainwaring and D. Culler, "Active Message Applications Programming |Interface and Communi cati on Subsystem
Organi zation", U C. Berkeley Conputer Science Technical Report, 1996

- D Culler et al., "Ceneric Active Message Interface Specification vl.1", U C Berkeley Conputer Science Techni cal
Report, Feb, 1995

This GASNet specification describes a network-independent and | anguage-i ndependent hi gh-perfornmance comruni cati on
interface intended for use in inplenenting the runtinme systemfor gl obal address space | anguages (such as UPC or
Titanium). GASNet stands for "d obal - Address Space Networki ng"

The interface is divided into 2 layers - the GASNet core APl and the GASNet extended API

* The extended APl is a richly expressive and flexible interface that provides nedi umand hi gh-1evel operations on
renmote nmenory and coll ective operations (basically anything that we coul d i nagi ne bei ng i npl enented usi ng hardware
support on some NIC s)

* The core APl is a narrow interface based on the Active Messages paradigm which is general enough to inplenent
everything in the extended API

The core APl is the minimuminterface that must be inplenmented on each network when porting to a new system and we
provi de a network-independent reference inplenentation of the extended APl which is witten purely in terns of the
core APl to ease porting and quick prototyping. Inplenmentors for NNC s that provi de sone hardware support for higher-

| evel messagi ng operations (e.g. support for servicing renote reads/wites on the NI C wi thout involving the main CPU
are encouraged to al so inplement an appropriate subset of the extended APl directly on the network of interest
(bypassing the core API) to achieve nmaxi mal perfornmance for those operations (but this is an optimzation and i s not
required to have a working system). Mst clients will use calls to the extended APl functions to inplenment the bul k of
their comuni cation work (thereby ensuring optinmal performance across platforns). However the client is also pernitted
to use the core active nmessage interface to inplenment non-trivial |anguage-specific or conpiler-specific conmunication
operations which woul d not be appropriate in a | anguage-i ndependent APl (e.g. inplenenting distributed | anguage-|eve

| ocks, distributed garbage collection, collective menory allocation, etc.)

Note the extended APl interface is nmeant prinmarily as a |l owlevel conpilation target, not a library for hand-witten
code - as such, the goals of expressiveness and performance generally take precedence over readability and minimality.

Conventi ons:

Al GASNet entry points are |ower-case identifiers with the prefix gasnet_

Al constants are upper-case and preceded with the prefix GASNET_

Clients access the GASNet interface by including the header gasnet.h and linking the appropriate library

Except where otherw se noted, any of the operations in the GASNet interface could be inplenented using nacros or
inline functions in an actual inplenentation - they are specified using function declaration syntax bel ow to make the
types clear, but all correct client code nust type check using the definitions below. In no case should client code
assune it can create a "function pointer" to any of these operations. Any nacro inplenentations will ensure that
argunents are eval uated exactly once

* | npl enentati on-specific values in declarations are indicated using "???"

* Sections marked "I nplementor's note" are recommendations to inplementors and are not part of the specification

Definitions:

node - An OS-level process which called gasnet_init(), and its associated | ocal nmenory space and system resources. The
basic unit of control when interfacing wth GASNet

thread - A single thread of control within a GASNet node, which possibly shares a virtual nmenory space and OS-|eve
process-id with other threads in the node. dient which may concurrently call GASNet fromnore than a single thread
must conpile to the multi-threaded version of the GASNet |ibrary. Except where otherw se noted, GASNet nakes no

di stinction between the threads within a multi-threaded node, and all control functions (e.g. barriers) should be
executed by a single thread on the node on behalf of all |ocal threads

job - The collection of nodes nmaking up a parallel execution environment. Nodes often correspond to physical
architectural units, but this need not be the case (e.g. nodes may share a physical CPU nenmory/NIC in nultiprogramed
systems with sufficient sharable resources - note that some GASNet inplenentations may limt the nunber nodes which
can run concurrently on a single systembased on the nunber of physical network interfaces)

Configuration of gasnet:

Client code nmust #define exactly one of GASNET_PAR, GASNET_PARSYNC or GASNET_SEQ when conpiling the GASNet |ibrary and
the client code (before including <gasnet.h>) to indicate the threadi ng environnent

GASNET_PAR - The npst general configuration. Indicates a fully multi-threaded and thread-safe environment - the client
may call GASNet concurrently fromnore than one thread. The exact threading systemin use is systemspecific, although
for obvious reasons both GASNet and the client code nust agree on the threadi ng system- unless otherw se noted, the
default mechanismis PCS| X threads.

12

GASNET_PARSYNC - Indicates a nulti-threaded but non-concurrent (non-threadsafe) GASNet environment, where nmultiple
client threads may call GASNet, but their accesses to GASNet are fully serialized (e.g. by sone |evel of

synchroni zati on above the GASNet interface). GASNet may safely assune that it will never be called fromnore than one
client thread _concurrently_ (and the client must ensure this property holds). Cient code nmust still use GASNet no-
interrupt sections and handl er-safe | ocks to ensure correct operation.

GASNET_SEQ - I ndicates a single-threaded, non-threadsafe environnment. GASNet may safely assume that it will only ever
be called fromone unique client thread. Cient code nust still use GASNet no-interrupt sections and handl er-safe
l ocks to ensure correct operation.

*** W may be able to nake GASNet inplenmentations i ndependent of the threading systemby having the client provide a
few cal | back functions (e.g. nmutex create/lock/unlock, thread create, threadid query and thread-|ocal -data set/get)

| mpl enentors not e:

* change the nane of gasnet_init based on which nbde is selected to ensure correct version is |inked

* An inplenmentation of GASNET_PAR is sufficient to handle all the configurations - the other configurations just
permit certain useful optimzations (such as renoving unnecessary locking in the library)

* Interrupt-driven inplenmentati ons of GASNET_SEQ and GASNET_PARSYNC using signals nust be prepared to handl e the case
where the thread responding to the signal may not be the thread currently inside a GASNet call. They may al so need to
use a private lock during HSL rel ease to prevent nultiple threads from polling sinultaneously

Errors:

Many GASNet core functions return O on success (GASNET_CK), or else they return errors fromthe following list, as
speci fied by each entry point:

GASNET_OK = 0 no error

GASNET_ERR_RESOURCE_FAI LURE

GASNET_ERR_BAD ARG

GASNET_ERR _NOT_INI T

GASNET_ERR _BARRI ER_M SMATCH

GASNET_ERR_NOT_READY

Except where otherw se noted, errors that occur during a call to the extended APl are fatal.

Many of the core APl entry points will return GASNET_ERR RESOURCE_FAILURE to indicate a generic failure in the
hardwar e or conmuni cations system GASNET_ERR BAD ARG to indicate an illegal client argunent, or GASNET_ERR NOT_IN T
to indicate that gasnet_init() has not been call ed.

If any node of a GASNet job crashes, aborts, or suffers a fatal hardware error, GASNet should nake every attenpt to
ensure that the remaining nodes of the job are termnated in a tinmely manner to prevent creation of orphaned
processes.

GASNet Types:

gasnet _node_t - unsigned integer type representing a unique O-based node i ndex

gasnet _handl e_t - an opaque type representing a non-bl ocking operation in-progress initiated using the extended AP
gasnet _handl er_t - an unsigned integer type representing an index into the core APl AM handl er table

gasnet _handlerarg_t - a 32-bit signed integer type which is used to express the user-provided argunments to all AM
handl ers. Platforms |acking a native 32-bit type may define this to a 64-bit type, but only the |ower 32-bits are
transmtted during an AM nessage send (and sign-extended on the receiver)

gasnet _token_t - an opaque type passed to core APl handl ers which may be used to query nessage infornation

gasnet _register_t - the largest unsigned integer type that can fit entirely in a single CPU register for the current
architecture and ABl. SIZEO- GASNET _REG STER T is a preprocess-tinme literal integer constant (i.e. not

"sizeof ()")indicating the size of this type in bytes

gasnet _handlerentry_t - struct type used to negotiate handler registration in gasnet_init()

Conpi l e-time constants

GASNET_VERSI ON
an integer representing the major version of the GASNet spec to which this inplenmentation conplies. |nplenentations of
this version of the specification should set this value to the integer 1

GASNET_MAXNODES
an integer representing the naxi mum nunber of nodes supported in a single GASNet job

GASNET_AL| GNED_SEGVENTS
defined to be 1 if gasnet_init() guarantees that the renote-access nmenory segnment will be aligned at the same virtual
address on all nodes. defined to O otherw se

General notes:

* All GASNet functions (in the extended _and_ core APlI) support |oopback (i.e. a node sending a get or active nessage
toitself), and all functions will still work in the case of single-node jobs (e.g. barriers are basically no-ops in
that case)

* GASNet will ensure that stdout/stderr are correctly propagated in a systemspecific way (e.g. to the spawning
console or possibly to a file or set of files). No guarantees are nade about propagation of stdin, although sone

i mpl ement ati ons nay choose to deal with this.

13

* GASNet mmkes no guarantees about the propagati on of external signals across a job - however, see comrents in
gasnet _exit

The core APl consists of

* Ajob control interface for bootstrapping, job termnation and job environnment queries

* The active nessaging interface for inplenenting requests, replies and handlers

* An interface which provides handl er signal-safety and atonmicity control (no-interrupt sections and handl er-safe
| ocks)

Job Control Interface

typedef struct {
gasnet _handler_t index; // == 0 for don't care
void (*fnptr)();

} gasnet_handl erentry_t

#def i ne GASNET_SEGBASE_ANY ((void *)-1)
#defi ne GASNET_SEGSI ZE EVERYTH NG ((uintptr_t)-1)

int gasnet_init(int *argc, char ***argyv,
gasnet _handl erentry_t *table, int nunentries
voi d *segbase, uintptr_t segsize
int allowraults)

Called by all gasnet-based applications upon startup before any other processing of the command-Iline argunents takes
pl ace. Must be called before any calls to any other entry points in this specification, and before any investigation
of the command-line paraneters passed to the programin argc/argv, which may be nodified or augnented by this call
Initializes the GASNet system and perfornms any system specific setup required, which may include spawning of parallel
jobs. The semantics of any code executing before the call to gasnet_init() is inplenentation-defined (for exanple, it
i s undefined whether stdin/stdout/stderr are functional, or even how nany nodes will run that code)

This call may fail with a fatal error and inplenentation-defined nessage if the nodes of the job cannot be
successfully bootstrapped. It also may return an error code such as GASNET_ERR RESOURCE_FAI LURE to indicate there was
a problemacquiring the |local requested network or systemresources. Otherwise, it returns GASNET_OK to indicate
success. A successful call acts as a global barrier and blocks until all other nodes which are part of this paralle

j ob have successfully called gasnet_init()

May only be called once during a process lifetime, subsequent calls will return an error

This call may register some UNI X signal handlers (e.g. to support interrupt-based inplenentations or aggressive
segnent registration policies). dient code which registers signal handlers nust be careful not to preenpt any GASNet -
regi stered signal handlers (even for seenmingly fatal signals such as SIGABRT) - the only signal which the client may
al ways safely catch is SIGQUIT.

The handler table input (of size nunentries) is used for registering active-nmessage handl ers provided by the client
code. Clients that never explicitly call the active-nmessage request functions in the core APl need not register any
handl ers, and may pass a NULL pointer for table. Cients wishing to register some handlers should fill in the table
with function pointers and the desired handler index (or index O for "don't-care") - note that handlers 0..199 are
reserved for GASNet internal use, and handl ers 200..255 are available for client-provided handlers. Once gasnet_init()
returns, any "don't care" handler indexes in the table will be nodified in place to reflect the handl er index assigned
for each handler - the assignment algorithmis determnistic: passing the same handl er table on each node wll
guarantee an identical resulting assignment on each node. Handl er function prototypes should match the prototypes
described in the Active Message Interface section

segbase and segsize are used to communicate the size and (optionally) the desired |location of the shared nenory data
segrment for the local node that will be used for all renote accesses (i.e. using the data transfer functions of the
extended APl) or as the target of any |arge-sized active-nmessages in the core APl. The client passes the desired size
of this area in bytes as segsize (which nmust be a nultiple of the system page size). The client may provide a "hint"
for the desired |l ocation of the segnent by passing a pointer in segbhase to a page-aligned address that points to a
regi on of pages of the appropriate size (if no "hint" is to be provided, the client shoul d pass seghase ==
GASNET_SEGBASE_ANY). GASNet is free to ignore the value of the hint and choose a different segnment base address. The
resulting segnent assignnent is guaranteed to be aligned on a system page boundary, and the values for all nodes can
be queried using gasnet_get Segnent | nfo().

The size of the segment is only limted by the size of the virtual nenory, however sone GASNet inplenentations wll
performbetter when the size is |less than sonme inplenentation-specific size. This inplenentation-specific size may be
queried using gasnet_get MaxNati veSegnent Si ze().

If no hint is provided, GASNet will attenpt to place the data segnent in an area of the virtual nmenory space whose
pages are currently unused (e.g. by calling sbrk), and the function may fail if insufficient free _virtual _ pages can
be acquired to acconpdate the size request. If a hint is provided (and GASNet accepts the hint) then it is undefined
whet her the fornmer contents of that nenory (if any) are preserved. dients who wish to map the entire virtual address
space (including pages currently in use) should set the hint to zero and size to GASNET_SEGS| ZE EVERYTHI NG (and this
is guaranteed to succeed, although it nmay provide suboptinal performance on sone inplenentations)

14

If the inplenentation defines the nacro GASNET_ALI GNED _SEGVENTS to 1, then gasnet_init() guarantees that the renote-
access nenory segnent will be aligned at the same virtual address and have the sane size on all nodes (and will fai
if it cannot provide this, for exanple if different nodes request different sizes). O herw se, this guarantee is not
provi ded (although passing aligned "hints" _may_ still achieve the sane effect)

GASNet will not initialize data within the nenory segnment in any way, nor will it attenpt to access the nenory
locations within the segnent until directed to do so by a data transfer function or |large active nessage

If allowFaults is zero, then GASNet guarantees that data transfer functions, |arge active nessages and | ocal accesses
referencing these nenory |l ocations will succeed, even before any local activity takes place on those pages (i.e. in an
inmplementation performng |lazy registration, first touch = allocate). Wen allowraults is non-zero, then such accesses
to pages where the client has not taken systemspecific actions to properly register the pages with the operating
system _may_ cause a segnentation fault on sonme systens and/or inplenentations (this is nost hel pful when the segnent
size is GASNET_SEGSI ZE_EVERYTHI NG corresponding to the entire virtual address space)

I mpl enentor' s notes:

Wien al | owFaul t s==0, GASNet nust take steps to ensure the pages in the segnent have been properly registered for
renpte access in a systemspecific and i nplenentation-specific way (e.g. mmappi ng them so they get added to the
process page table, pinning the pages, registering the physical address with the NIC, etc.). |nplenmentations are
encour aged to defer consum ng physical menmory or swap space resources for pages in the segnent until the first actua
reference to them

Because the segnent size is limted only by the virtual nmenory size, every inplenentation that pins pages needs a
strategy for handling renote accesses when the segnment size exceeds the anount of pinnable pages - e.g. sone

impl ementations nay dynamically pin pages, others may pin only a portion of the segnent and use an extra copy to
handl e access to data outside the pinned region

Some GASNet inplenentations may need to allocate and pin additional menory for their own internal use in nmessaging
(e.g. send buffers), but such nmenory should not fall within the client's data segnment when all owFaul ts==0 (al though it
may be adjacent to it).

Some GASNet inplenentations may al so choose to pin other pages to optim ze access and renpve extra copies - for
exanpl e, pinning the program stack may be advi sabl e on sone systens since a | arge nunber of the data transfer
functions in the extended APl are likely to use stack locations as the |ocal source/destination

I mpl enent ati ons which set GASNET_ALI GNED_SEGVENTS=1 and choose to accept the client "hint" need to check the hint
pointers are aligned across processors and otherw se ignore sone hints (may not be applicable to inplenentations which
arrange to only run gasnet_init froma single node)

ui ntptr_t gasnet_get MaxNati veSegment Si ze()

Retri eve the maxi mum menory segnent size that may be provided to gasnet_init() which is still likely to provide the
hi ghest |evel of performance for the extended APl data transfers and |arge request/reply active nessages

I mpl enentations with no nmaxi mum size (i.e. where performance is unaffected by segnment size) should return
GASNET_SEGSI ZE_EVERYTHI NG. The return value of this function may depend on current systemresource usage, but should
return the same value for all nodes in a given job for the life of that job. The value returned is only a performance
hint (which nay be wong) - the segnent size selected by the client should never affect the correctness of the
comuni cation system

This is the only function in the GASNet APl which nmay be legally called before gasnet_init()
voi d gasnet_exit(int exitcode)

Termi nate the current GASNet job and return the given exitcode to the consol e which invoked the job (in a system

specific way). This call is _not_ a collective operation, meaning any node may call it at any tinme after
initialization. It causes the systemto flush all |1/O release all resources and termnate the job for all active
nodes. |f several nodes call it sinultaneously with different exit codes, the result will be one of the provided exit

codes (chosen arbitrarily). This function should be called at the end of main() after a barrier to ensure proper
systemexit, and should also be called in the event of any fatal errors. GASNet clients are encouraged to cal

gasnet _exit() before explicitly exiting (by calling exit(), abort()) to reduce the possibility and lifetinme of

or phaned nodes, but this is not required. |If nmore than one thread calls gasnet_exit() within a given synchronization
phase with different exitcode values, the value returned to the console will be one of the provided exit codes (chosen
arbitrarily).

GASNet will send a SIGQUI T signal to the node if it detects that a renmpte node has called gasnet_exit or crashed (in
whi ch case the node should catch the signal, performany systemspecific shutdown, then call gasnet_exit() to end the
| ocal node process). GASNet will also send a SIGQUIT signal if it detects that the job has received a different
catchabl e term nate-the-programsignals (e.g. segnentation fault) since sone of these other signals may be neani ngfu
(and non-fatal) to certain GASNet inplenentations.

Job Environnment Queries

gasnet _node_t gasnet_nynode();

returns the uni que, 0-based node index representing this node in the current GASNet job
gasnet _node_t gasnet_nodes();

returns the nunber of nodes in the current GASNet job

typedef struct {

15

voi d *addr;
uintptr_t size;
} gasnet_seginfo_t;

int gasnet_get Segnent | nfo(gasnet _seginfo_t *seginfo_table, int nunmentries);

Query the segnent base addresses and sizes for all the nodes in the job.

seginfo_table is an array of gasnet_seginfo_t (and nunentries is the nunber of entries in the table). The val ue of
nunmentries should be at | east gasnet_nodes().

GASNet fills in the table with the registered segnent base addresses and sizes for each node (including the |ocal
one).

This is a non-col |l ective operation.

Ret urns GASNET_OK on success.

char *gasnet _getenv(const char *nane);

has the sane semantics as the PCSI X getenv() call, except it queries the systemspecific environnent which was used to
spawn the job (e.g. the environnment of the spawning console). Calling POSI X getenv() directly on sone inplenentations
may not correctly return values reflecting the environment that initiated the job spawn. The semantics of POSI X
setenv() are undefined in GASNet jobs (specifically, it will probably fail to propagate changes across nodes).

Core APl Active Messaging Functions - differences fromActive Messages 2.0

The GASNet core APl was originally based on Active Messages 2.0 (as described by A. Mainwaring and D. Culler in
"Active Message Applications Programming |Interface and Communi cati on Subsystem Organi zation"), however we've renoved
sone of the generality which is not required (and can | ead to perfornmance degradation and nore inplenentation effort),
and stripped it down to the bare essentials required for active nmessages in a purely SPMD environment. The final spec
more closely resenbles the "CGeneric Active Message Interface Specification v.1.1", created by D.Culler et al., however
we describe the differences fromAM2. 0 for readers famliar with that specification (and because we envision a nunber
of the GASNet core inplenentations being sinply a thin wapper over the existing AM2.0 inplenentati ons on a nunber of
platfornmns).

Here are a sunmary of the changes (informal style.. this is not really part of the spec):
* the functions are renamed to match the GASNet conventions

* there are no bundles and only one (inplicit) endpoint. This necessitates the foll ow ng changes:

* All AM2 functions which took an endpoi nt or bundl e argunent have that argunment renoved

* The follow ng functions no |onger exist: AMInit, AM Term nate, AM Al | ocateBundl e, AM Al | ocateEndpoint,
AM Fr eeEndpoi nt, AM FreeBundl e, AM MoveEndpoi nt, AM Get XferM AM Get Dest Endpoi nt

* all handler registration is performed during gasnet_init(), and the maxi mum nunber of handlers is fixed at 256
(including handler 0, the error handler)

* The follow ng functions no | onger exist: AM Set Handl er and AM Set Handl er Any, AM Get NunHandl ers,
AM Set Nunmber Handl ers, AM MaxNumHandl er s

* Segnment registration is handl ed by gasnet _init() (using a uintptr_t to allow entire VA space)

* The follow ng functions no | onger exist: AM Set Seg and AM MaxSegLength (still have AM Get Seg)

* inplenentati ons nust support an endpoi nt segnent |ength that spans the entire virtual address space, though the
performance may change for |arger segnent sizes (if gasnet_init requests a size |arger than what underlying AM Set Seg
can provide, then we turn off large AM Xfers and enul ate gasnet _Xfer using nedi um nessages)

* the dest_offset argument to the Xfer functions is changed to a voi d* address

* there are no tags or endpoint names visible to the user - such details are all handled internally by the job startup
nmechani sm which sets up a SPMD-style napping table (all the nodes, including the current node, in ascendi ng order by
rank) .

* Therefore, the follow ng functions to | onger exist: AM Map, AM MapAny, AM Unmap, AM SetTag, AM Cet Tag,
AM Get Tr ansl ati onNarme, AM Get Transl ati onTag, AM Get Transl ati onl nUse, AM MaxNumlransl ati ons, AM Get Nunmilr ansl ati ons,
AM Set NunTr ansl ati ons, AM Get MsgTag

* the en_t * argunment to AM Get SourceEndpoint is now an gasnet_node_t * and returns the node rank of the sender (the
now opaque token could be inplenented as the integer node index itself, although we allow inplenentations to still use
it as a ptr to netadata if required)

* AM Request Xf er AsyncM has nore useful semantics (may bl ock)
* AM Set Expect edResources no | onger exists
* all inplenmentations nust support the AM PAR (nulti-threaded) access node (GASNET_PAR configuration)
* how to handl e 64-bit inplenmentations? Need to specify...
approach 1: make the handler args scale with pointer size (64-bit ints)
cons: LP64 platforms (like Itanium have 32-bit ints, but 64-bit ptrs
approach 2: require small size to be 16 32-bit args (ensure 8 (void*)'s can be sent)
cons: handl er code needs to be rewitten for 64-bit platforns to perform packi ng/ unpacki ng
* Bl ocking polling operation is sinplified in the foll owi ng ways:

* AM CGet Event Mask and AM Set Event Mask no | onger exi st
* AM Wi t Sema bl ocks the current thread until ??????

16

* Maybe deprecate ReplyXfer in favor of GetXfer

* some inplenmentations have trouble with large ReplyXfer's (with software flow control & reliability)

* petter yet, just separate AM MaxLong into AM MaxLongRequest, and AM MaxLongReply

* AMR2.0 Get Xfer doesn't add any expressiveness - really want a way to get fromrenote segnent into arbitrary |oca
menory address

* All Xfer functions specify the destination using a virtual nenmory address (which must fall within the registered
segnent) rather than a segnment offset

* request handlers are pernmitted to omit a reply call if no reply handler is needed (and some inpl enentati ons may
optim ze this case)

Active Messaging Interface

Active nessage communication is fornulated as |ogically matching request and reply operations. Upon receipt of a
request nmessage, a request handler is invoked; |ikew se, when a reply nessage is received, the reply handler is

i nvoked. Request handlers can reply at nost once to the requesting node. |If no explicit reply is made, the |ayer may
generate one (to an inplicit do-nothing reply handler). Thus a request handler can call reply at nobst once. It is an
error for a request handler to reply to any node other than the requesting node. Reply handl ers cannot request or
reply.

Here is a high-level description of a typical active nmessage exchange between two nodes, A and B

1. Acalls AVRequest*() to send a request to B
it includes argunents, data payl oad, the node index of B and the index of the request handler to run on B when the
request arrives

2. At sone later time, B receives the request, and runs the appropriate request handler with the argunents and data
(if any) provided in the AMRequest*() call.

The request handl er does sone work on the argunents, and usually finishes by calling AMReply to issue a reply
message before it exits (replying is optional in GASNet, but required in AM - if the request handl er does not reply
then no further actions are taken)

AMReply takes the token passed to the request handl er, argunents and data payl oad, and the index of the reply
handl er to run when the reply nessage arrives. It does not take a node index because a request handler is only
pernmitted to send a reply to the requesti ng node

3. At sone later tinme, A receives the reply nessage from B and runs the appropriate reply handler, with the argunents
and data (if any) provided in the AVMRepl y*() call
The reply handl er does some work on the argunments and then exits. It is not pernmitted to send further nmessages

The message layer will deliver requests and replies to destination nodes barring any catastrophic errors (e.g. node
crashes). Froma sender's point of view, the request and reply functions block until the nessage is sent. A nessage is
defined to be sent once it is safe for the caller to reuse the storage (registers or nmenory) containing the nessage
(one notabl e exception to this policy is gasnet_RequestLargeAsyncM)). In inplenentations which copy or buffer
messages for transmission, the definition still holds: message sent neans the |ayer has copied the nmessage and
promises to deliver the copy with its ~“best effort'', and the original nmessage storage may be reused. By best effort
the message |ayer promises it will take care of all the details necessary to transnmt the nmessage. These details
includes any retransm ssion attenpts and buffering i ssues on unreliable networks

However, in either case, sent does not inply received. Once control returns froma request or reply function, clients
cannot assune that the nessage has been received and handl ed at the destination. The nmessage |ayer only guarantees
that if a request or reply is sent, and, if the receiver occasionally polls for arriving messages, then the nessage
wi Il eventually be received and handl ed. From a receiver's point of view, a nessage is defined to be received only
once its handler function is invoked. The contents of partially received nmessages and nessages whose handl ers have not
executed are undefined

Active Message Categories

There are 3 categories of active nessages

Short - messages that carry a few integer argunments (up to gasnet_AMVaxShort())
handl er prototype
voi d handl er (gasnet _t oken_t token
gasnet _handl erarg_t arg0, ... gasnet_handlerarg_t argM1);

Medi um - nessages that in addition to integer argunents can carry an opaque data payload (up to gasnet_AMVaxMedi un()
bytes in |ength)
handl er prototype
voi d handl er (gasnet _t oken_t token
void *buf, size_t nbytes,
gasnet _handlerarg_t argO, ... gasnet_handlerarg_t argM1);

Long - nessages that in addition to integer argunents can carry an opaque data payload (up to gasnet_AMvaxLong() bytes
in length) which is destined for a particular predetermned address in the segnent of the renpte node (often
i mpl ement ed usi ng RDVA)
handl er prototype:
voi d handl er (gasnet _t oken_t token

17

voi d *buf, size_t nbytes,
gasnet _handl erarg_t arg0, ... gasnet_handlerarg_t argm1);

The nunber of handl er arguments (M is specified upon issuing a request or reply by choosing the request/reply
function of the appropriate nanme. The category of nmessage and value of Mused in the request/reply nessage sends
determ nes the appropriate handl er prototype, as detailed above. If a request or reply is sent to a handl er whose
prototype does not match the requirenents as detail ed above, the result is undefined.

I mpl enentor's note:

Sone i npl enentations may choose to optimze nedium and | ong nessages for payl oads whose base address and |l ength are
aligned with certain convenient sizes (word-aligned, doubl eword-aligned, page-aligned etc.) but this does not affect
correctness.

Active Message Size Linmts

Used to query the nmaxi mum si ze nessages of each category supported by a given inplenmentation. These are likely to be
inmplenmented as macros for efficiency of client code which uses them (within packing |oops, etc,)

int gasnet _AMVaxArgs()

Ret urns the maxi mum nunber of handl er argunents (i.e. M that may be passed with any AMrequest or reply function.
This value is guaranteed to be at least (2 * MAX(sizeof (int), sizeof(void*))) (i.e. 8 for 32-bit systens, 16 for 64-bit
systens), which ensures that 8 ints and/or pointers can be sent with any active nessage. Al inplenentations mnust
support _all_ values of MfromO...gasnet_AMVaxArgs().

int gasnet _AMVaxMedi un()

Ret urns the maxi mum nunber of bytes that can be sent in the payl oad of a single medium AMrequest or reply. This val ue
is guaranteed to be at |east 512 bytes on any inplenmentation.

int gasnet AMVaxLongRequest ()

Ret urns the maxi mum nunber of bytes that can be sent in the payload of a single long AMrequest. This value is
guaranteed to be at |least 512 bytes on any inplenentation. |nplenentations which use RDVA to inplenment |ong nessages
are likely to support a much |arger val ue.

int gasnet _AMvaxLongRepl y()

Ret urns t he maxi num nunber of bytes that can be sent in the payload of a single long AMreply. This value is

guaranteed to be at |east 512 bytes on any inplenmentation. |nplenentations which use RDVA to inplenment |ong nessages
are likely to support a nmuch |arger val ue.

Active Message Request Functions

In the function descriptions below, Mis to be replaced with a nunber [0 ... gasnet_ AMVaxArgs()]

int gasnet _AMRequest Short M gasnet _node_t dest, /* destination node */
gasnet _handl er_t handler, /* index into destination endpoint's handler table */
gasnet _handlerarg_t argO, ..., gasnet_handlerarg_t argM-1);

Send a short AMrequest to the given destination and handler, with the given M argunents.

gasnet _AMRequest Short M returns control to the calling thread of conputation after sending the request nessage. Upon
re-ceipt, the receiver invokes the appropriate active nmessage request handler function with the Minteger argunents.
Ret urns GASNET_OK on success.

int gasnet_AMRequest Medi unM gasnet _node_t dest, /* destination node */
gasnet _handl er _t handler, /* index into destination endpoint's handler table */
voi d *source_addr, size_t nbytes, /* data payl oad */
gasnet _handlerarg_t argO, ..., gasnet_handlerarg_t argM-1);

Send a nmedi um AM request to the given destination and handler, with the given Margunents and gi ven data payl oad
copied fromthe local node's nenory space (source_addr need not fall within the registered data segnment on the | ocal
node) .

The val ue of nbytes nmust be no larger than the value returned by gasnet_AMvaxMedi un().

gasnet _AMRequest Medi umM returns control to the calling thread of conputation after sending the associated request, and
the source menory may be freely nodified once the function returns. The active nessage is logically delivered after
the data transfer finishes.

Upon re-ceipt, the receiver invokes the appropriate request handler function with a pointer to tenporary storage
containing the data payl oad, the nunmber of data bytes transferred, and the Minteger argunents. The dynam c scope of
the storage is the sane as the dynam c scope of the handler. The data should be copied if it is needed beyond this
scope.

Ret urns GASNET_OK on success.

int gasnet_AMRequestLongM gasnet_node_t dest, /* destination node */
gasnet _handl er_t handler, /* index into destination endpoint's handler table */
voi d *source_addr, size_t nbytes, /* data payl oad */
voi d *dest_addr, /* data destination on destination node */

18

gasnet _handl erarg_t arg0, ..., gasnet_handlerarg t argM-1);

Send a long AMrequest to the given destination and handler, with the given Margunents and gi ven data payl oad copied
fromthe | ocal node's nenory space (source_addr need not fall within the registered data segnent on the | ocal node).
The val ue of nbytes nust be no larger than the val ue returned by gasnet_AMvaxLongRequest ().

The menory specified by [dest_addr...(dest_addr+nbytes-1)] nust fall entirely within the nmenory segnent registered for
renote access by the destination node.

If dest is the current node (i.e. |oopback) and the source and destination menory overlap, the result is undefined.
gasnet _AMRequest LongM returns control to the calling thread of conputation after sending the associ ated request, and
the source nenory nmay be freely nodified once the function returns. The active nessage is logically delivered after
the bul k transfer finishes. Upon re-ceipt, the receiver invokes the appropriate request handler function with a
pointer into the nenory segnent where the data was placed, the nunmber of data bytes transferred, and the M nteger

ar gument s.

Ret urns GASNET_OK on success.

i nt gasnet _AMRequest LongAsyncM gasnet _node_t dest, /* destination node */
gasnet _handl er_t handler, /* index into destination endpoint's handler table */
voi d *source_addr, size_t nbytes, /* data payl oad */
voi d *dest _addr, /* data destination on destination node */
gasnet _handlerarg_t argO, ..., gasnet_handlerarg_t argM-1);

gasnet _AMRequest LongAsyncM) has identical semantics to gasnet AMRequestLongM), except that the data payl oad source
menory nust NOT be nodified until the matching reply handl er has executed.

Some i nmpl enentations may | everage this additional constraint to provide higher performance (e.g. by reducing extra
data copying).

I npl enentor's Note:
Note that unlike the AM.0 function of simlar name, this function may bl ock tenporarily if the network is unable to
i mredi atel y accept the new request.

Active Message Reply Functions

int gasnet_AMRepl yShort M gasnet _t oken_t token, /* token provided on handler entry */
gasnet _handl er_t handler, /* index into destination endpoint's handler table */
gasnet _handl erarg_t argO, ..., gasnet_handlerarg_t argM-1);

Send a short AMreply to the given handler on the requesting node (i.e. the one responsible for this particular
invocation of the request handler), and include the given M argunents.

gasnet _AMRepl yShortM returns control to the calling thread of conputation after sending the reply nmessage.

Upon re-ceipt, the receiver invokes the appropriate active nessage reply handler function with the Minteger
argunents.

Ret urns GASNET_OK on success.

int gasnet _AMRepl yMedi unM gasnet _t oken_t token, /* token provided on handler entry */
gasnet _handl er_t handler, /* index into destination endpoint's handler table */
voi d *source_addr, size_t nbytes, /* data payl oad */
gasnet _handlerarg_t argO, ..., gasnet_handlerarg_t argM-1);

Send a nedium AMreply to the given handler on the requesting node (i.e. the one responsible for this particul ar
invocation of the request handler), with the given Margunents and gi ven data payl oad copied fromthe |ocal node's
menory space (source_addr need not fall within the regi stered data segnent on the | ocal node).

The val ue of nbytes nmust be no larger than the val ue returned by gasnet_AMvaxMedi un().

gasnet _AMRepl yMedi umM returns control to the calling thread of conputation after sending the associated reply, and the
source nmenory may be freely nodified once the function returns. The active nmessage is logically delivered after the
data transfer finishes.

Upon re-ceipt, the receiver invokes the appropriate reply handler function with a pointer to tenporary storage
containing the data payl oad, the nunber of data bytes transferred, and the Minteger argunents. The dynam c scope of
the storage is the sane as the dynam c scope of the handler. The data should be copied if it is needed beyond this
scope.

Ret urns GASNET_OK on success.

int gasnet_AMRepl yLongM gasnet _t oken_t token, /* token provided on handler entry */
gasnet _handl er _t handler, /* index into destination endpoint's handler table */
voi d *source_addr, size_t nbytes, /* data payl oad */
voi d *dest_addr, /* data destination on destination node */
gasnet _handlerarg_t arg0, ..., gasnet_handlerarg_t argvM-1);

Send a long AMreply to the given handler on the requesting node (i.e. the one responsible for this particular
invocation of the request handler), with the given Margunents and gi ven data payl oad copied fromthe |ocal node's
nmenory space (source_addr need not fall within the registered data segnent on the | ocal node).

The val ue of nbytes nmust be no larger than the value returned by gasnet_AMvaxLongRepl y().

The nmenory specified by [dest_addr...(dest_addr+nbytes-1)] nust fall entirely within the menory segnent registered for
renote access by the destination node.

If dest is the current node (i.e. |oopback) and the source and destination nenory overlap, the result is undefined.
gasnet _AMRepl yLongM returns control to the calling thread of conputation after sending the associated reply, and the
source menory may be freely nodified once the function returns. The active nmessage is logically delivered after the

19

bul k transfer finishes. Upon re-ceipt, the receiver invokes the appropriate reply handler function with a pointer into
the -menory segnment where the data was placed, the nunmber of data bytes transferred, and the Minteger arguments.
Ret urns GASNET_OK on success

M sc. Active Message Functions

int gasnet _AMPol | ()

An explicit call to service the network, process pending nmessages and run handl ers as appropriate

Most of the nessage-sending prinmitives in GASNet poll the network inplicitly.

Purely polling-based inplenentations of GASNet may require occasional calls to this function to ensure progress of
renot e nodes during conpute-only loops. Any client code which spin-waits for the arrival of a nessage should call this
function within the spin loop to optimze response tine.

This may be a no-op on sone inplementations (e.g. purely interrupt-based inplenentations)

Ret urns GASNET_OK unl ess an error condition was detected

int gasnet AMGet MsgSour ce(gasnet _token_t token, gasnet_node_t *srci ndex)
Can be called by handlers to query the source of the nmessage being handl ed. The token argunent nust be the token

passed into the handler on entry. Returns GASNET_OK on success

Atomicity semantics of handlers

Handl ers may run asynchronously with respect to the nain conputation (in an inplenentation which uses interrupts to
run sonme or all handlers), and they may run concurrently with each other on separate threads (e.g. in a CLUW

i mpl ement ati on where several threads may be polling the network at once). An inplenentation using interrupts may
result in handler code running within a signal handler context. Some inplenmentati ons may even choose to run handl ers
on a separate private thread created by GASNet (neking handl ers asynchronous with respect to all client threads). Note
that polling-based GASNet inplenentations are likely to poll (and possibly run handlers) fromw thin _any_GASNet cal
(i.e. not just gasnet_AMPoll()). Because of all this, handl er code should run quickly and to conpletion w thout making
bl ocking calls, and should not make assunptions about the context in which it is being run (special care nust be taken
to ensure safety in a signal handler context, see bel ow).

Regardl ess, handl ers thensel ves are not interruptible - any given thread will only be running a single AM handler at a
time and will never be interrupted to run another AM handler (there is one exception to this rule - the

gasnet _AMRepl y*() call in a request handl er may cause reply handlers to run synchronously, which may be necessary to
avoi d deadl ock in sone inplenentations. This should not be a problem since gasnet_AMReply*() is often the last action
taken by a request handler). Handlers are specifically prohibited frominitiating random network communication to
prevent deadl ock - request handl ers nust generate at nost one reply (to the requestor) and make no ot her communi cation
calls (including polling), and reply handlers may not comunicate or poll at all

The asynchronous nature of handlers requires two mechani snms to nmake them safe: a mechanismto ensure signal safety for
GASNet inpl ementations using interrupt-based mechani snms, and a | ocki ng mechanismto allow atom c updates from handl ers
to data structures shared with the client threads and other handlers

Ensuring signal -safety for handlers

Tradi tionally, code running in signal handler context is extremely circunmscribed in what it can do: e.g. none of the
standard pthreads/ System V synchroni zation calls are on the list of signal-safe functions (for such a list see Richard
Stevens' "Advanced Programming in the Unix Environnent"”, p 278). Note that even nost "thread-safe" libraries wll
break or deadlock if called froma signal handler by the same thread currently executing a different call to that
library in an earlier stack frame. One specific case where this is likely to arise in practice is calls to

mal l oc()/free(). To overcone these linmtations, and allow our handlers to be nore useful, the nornmal limtations on
signal handlers will be avoided by allowing the client thread to tenporarily disable the network interrupts that run
handl ers. Al function calls that are not signal-safe and coul d possibly access state shared by functions al so called
fromhandl ers MIUST be called within a GASNet "no-interrupt section":

voi d gasnet_hol d_i nterrupts()
voi d gasnet _resune_interrupts()

gasnet _hold_interrupts() and gasnet_resunme_interrupts() are used to define a GASNet no-interrupt section (any code
whi ch dynamical ly executes between the hold and resune calls is said to be "inside" the no-interrupt section)

These are likely to be inplenmented as macros and highly tuned for efficiency.

The hold and resume calls nust be paired, and may _not_ be nested recursively or the results are undefined (this nmeans
that clients should be especially careful when calling other functions in the client fromw thin a no-interrupt
section).

Both calls will return immediately in the conmbon case, although one or both nay cause nessages to be serviced on sone
i npl enent ati ons.

GASNet guarantees that no handlers will run asynchronously ON THE CURRENT THREAD within the no-interrupt section. The
no-interrupt state is a per-thread setting, and GASNet may continue running handl ers synchronously or asynchronously
on other client threads or GASNet-private threads (even in a GASNET_SEQ configuration) - specifically, a no-interrupt
section does NOT guarantee atomicity with respect to handler code, it nmerely provides a way to ensure that handlers
won't run on a given thread while it's inside a call to a non-signal-safe library.

Restrictions on No-interrupt Sections

20

There is a strict set of conventions governing the use of no-interrupt sections which nust be followed in order to
ensure correct operation on all GASNet inplenentations. Cients which violate any of these rules may be subject to
intermttent crashes, fatal errors or network deadl ocks

* Code in a no-interrupt section nust never block or spin-wait for an unbounded anpbunt of tine, especially when
awaiting a result produced by a handl er

* Code in a no-interrupt section nust not call any GASNet functions that may send requests or synchronously run
handl ers - specifically, the only GASNet functions which nay legally by called within the no-interrupt section are
gasnet _nynode(), gasnet_nodes(), gasnet_hsl _|ock(), gasnet_hsl _unl ock(), gasnet_AMeply*()

* gasnet _hold_interrupts() and gasnet_resune_interrupts() should not be called fromw thin a handl er context -
handlers are run within an inplicit no-interrupt section

* No-interrupt sections should only be held "briefly" to avoid starving the network (coul d cause performance
degradati on, but should not affect correctness). Very long no-interrupt sections (i.e. on the order of 10 sec or nore)
coul d cause sone GASNet inplenentations enploying tinmeout-based nechanisns to fail (e.g. renpte nodes nay decide this
node is dead and abort the job)

I npl enentor's note:
One possi bl e inplenentation

Keep a bit for each thread indicating whether or not a no-interrupt section is in effect, which is checked by al
asynchronous signal handl ers

If a signal arrives while a no-interrupt section is in effect, a different per-thread bit in menory will be narked
indicating a "m ssed GASNet signal": the gasnet_resune_interrupts() call will check this bit, and if it is set, the
action for the signal will be taken (the action for a GASNet signal is always to check the queue of incom ng network
messages, so there's no ambiguity on what the signal nmeant. Since nessages are queued, the single 'signal mssed bit
is sufficient for an arbitrary nunber of missed signals during a single no-interrupt section--GASNet nessages will be
renoved and processed until the queue is enpty)

I mpl enentation needs to hold a no-interrupt section over a thread while running handl ers

Strictly polling-based inplenmentati ons which never interrupt a thread can inplenment these as a no-op

Handl er - saf e Locks

In order to support handlers atomically updating data structures accessed by the main-line client code and ot her

handl ers, GASNet provi des the Handl er-safe | ock (HSL) nmechanism As the nane inplies, these are a special kind of |ock
whi ch are distinguished as being the _only_ type of lock which nay be safely acquired froma handler context. There is
also a set of restrictions on their usage which allows this to be safe (see below). Al |ock-protected data structures
inthe client that need to be accessed by handl ers should be protected using a handl er-safe lock (i.e. instead of a
standard POSI X nut ex) .

gasnet _hsl _t is an opaque type representing a handl er-safe | ock
HSL's operate anal ogously to POSI X nutexes, in that they are al ways mani pul ated using a pointer

gasnet _hsl _t hsl = GASNET_HSL_I NI Tl ALI ZER
voi d gasnet_hsl _init (gasnet _hsl _t *hsl)
voi d gasnet_hsl _destroy(gasnet_hsl _t *hsl)

Simlarly to POSI X mutexes, HSL's can be created in two ways. They can be statically declared and initialized using
the GASNET_HSL_I NI TI ALI ZER constant. Alternately, HSL's allocated using other means (such as dynam c allocation) nay
be initialized by calling gasnet_hsl _init(). gasnet_hsl_destroy() may be called on either type of HSL once it's no

| onger needed to rel ease any systemresources associated with it

It is erroneous to call gasnet_hsl _init() on a given HSL nore than once. It is erroneous to destroy an HSL which is
currently locked. Any errors detected in HSL initialization/destruction are fatal.

voi d gasnet _hsl _I| ock (gasnet _hsl _t *hsl)
voi d gasnet _hsl _unl ock (gasnet_hsl _t *hsl)

Lock and unlock HSL's. gasnet_hsl _lock() will block until the | ock can be acquired by the current thread
gasnet _hsl _l ock() may be called fromwithin main-line client code or fromwthin handlers - this is the O\NLY bl ocki ng
call which is permitted to execute within a GASNet handl er context (e.g. it is erroneous to call PCSIX nutex |ocking
functions).

gasnet _hsl _unl ock() rel eases the | ock previously acquired using gasnet_hsl _| ock()

It is erroneous to call these functions on HSL's which have not been properly initialized

Restrictions on Handl er-safe Locks

There is a strict set of conventions governing the use of HSL's which nust be followed in order to ensure correct
operation on all GASNet inplenentations. Anpbngst other things, the restrictions are designed to ensure that HSL's are
always held for a strictly bounded amount of time, to ensure that acquiring themfromwthin a handler can't lead to
deadl ock. dients which violate any of these rules may be subject to intermttent crashes, fatal errors or network
deadl| ocks.

* Code executing on a thread holding an HSL is inplicitly within a no-interrupt section, and nust follow all the

restrictions on code within a no-interrupt section (see above). gasnet_hol d_interrupts() and
gasnet _resune_interrupts() nmust not be explicitly called while holding an HSL

21

* HSL's may _not_ be | ocked recursively (i.e. calling gasnet_hsl _lock() on a lock already held by the current thread)
and attenpting to do so will lead to undefined behavior. It _is_ pernitted for a thread to acquire nmore than one HSL,
al though the traditional cautions about the possibility of deadlock in the presence of nmultiple | ocks apply (e.g. the
comon solution is to define a total order on |l ocks and always acquire themin a nonotonically ascendi ng sequence)

* HSL's nust be unlocked in the reverse order they were | ocked (e.g. lock A, lock B; ... unlock B; unlock A, is |ega
- reversing the order of unlocks is erroneous)

* HSL's may not be shared across GASNet processes executing on a machine - for exanple, it is specifically disallowed
to place an HSL in a systemV or mmapped shared nenory segment and attenpt to access it fromtwo different GASNet
processes

* Any handl er which | ocks one or nore HSL's MJST unlock themall before exiting or calling gasnet_AMRepl y*()

I mpl enentor' s note:

HSL's are likely to just be a thin wapper around a PCSI X nutex - need to add just enough state/code to ensure the
safety properties (rmust be a real |ock, even when GASNET_SEQ because client may still have multiple threads)

The only specific action required is that a no-interrupt section is enforced while the main-line code is hol ding an
HSL (nust be careful this works properly when nultiple HSL's are held or when running in a handl er)

Robust i npl enentations may add extra error checking to help discover violations of the restrictions, at |east when
conpiled in a debugging node - for exanple, it should be easy to detect: attenpts at recursive |ocking on HSL's
incorrectly ordered unlocks, handlers that fail to release HSL's, explicit calls to gasnet_hold_interrupts() and
gasnet _resune_interrupts() in a handler or while an HSL is held or in a no-interrupt section, and illegal calls to
GASNet messagi ng functions while holding an HSL or inside a no-interrupt section

===== Extended APl ======

Errors in calls to the extended APl are considered fatal and abort the job (by sending a SIGABORT signal) after
printing an appropriate error nessage

Menory-to-nmenory data transfer functions

These comments apply to all put/get functions
* nbytes paraneter should be a conpile-tine constant whenever possible (for efficiency)

* the source nenory address for all gets and the target nmenory address for all puts nmust fall within the nenory area
registered for renpte access by the rempte node (see gasnet_init()), or the results are undefined

* Pointers to renote nmenory are passed as an ordered pair of argunments: an integer node rank (a gasnet_node_t) and a
void * virtual nenory address, which logically represent a global pointer to the given address on the given node
These gl obal pointers need not be rempbte - the node rank passed to these functions may in fact be the rank of the
current node - inplenmentations nmust support this form of |oopback, and should probably attenpt to optimze it by
avoi ding network traffic for such purely |l ocal operations

* |f the source nmenory and destination menory regions overlap (but do not exactly coincide) the resulting value is
undef i ned

Bl ocki ng nenory-to-nenory transfers

voi d gasnet _get (void *dest, gasnet_node_t node, void *src, size_t nbytes)
voi d gasnet _put (gasnet_node_t node, void *dest, void *src, size_t nbytes)

Bl ocki ng get/put operations for aligned data. The get operation fetches "nbytes" bytes fromthe address "src" on node
"node" and places themat "dest"” in the |local nmenory space. The put operation sends "nbytes" bytes fromthe address
"src" in the local address space, and places themat the address "dest" in the menory space of node "node". A call to
these functions blocks until the transfer is conplete, and the contents of the destination menory are undefined unti

it conpletes. If the contents of the source nmenory change while the operation is in progress the result will be
impl ementation-specific. The src and dest addresses (whether |ocal and rempte) nust be properly aligned for accessing
obj ects of size nbytes. nbytes nust be >= 0 and has no maxi mum si ze, but inplenmentations will likely optimze for

smal | powers of 2

voi d gasnet _get_bul k (void *dest, gasnet_node_t node, void *src, size_t nbytes)
voi d gasnet _put _bul k (gasnet _node_t node, void *dest, void *src, size_t nbytes)

Bl ocki ng get/put operations for bulk (unaligned) data. These function simlarly to the aligned get/put operations
above, except the data is permtted to be unaligned, and i nplenentations are likely to optimze for |arger sizes of
nbyt es.

voi d gasnet _nenset (gasnet _node_t node, void *dest, int val, size_t nbytes)

Bl ocki ng operation that executes nenset(dest, val, nbytes) on the given node (and has the sane semantics as that
function).

Non- bl ocki ng nenory-to-nenory transfers

22

The follow ng functions provide non-bl ocking, split-phase nmenory access to shared data

Al'l such non-bl ocking operations require an initiation (put or get) and a subsequent synchroni zation on the
conpl etion of that operation before the result is guaranteed

Successful synchroni zation of a non-blocking get operation nmeans the local result is ready to be exanmined, and wl|
contain a value held by the source location at sone time in the interval between the call to the initiation function
and the successful conpletion of the synchronization (note this specifically allows inplenentations to delay the
underlying read until the synchronization operation is called, provided they preserve the bl ocking semantics of the
synchroni zati on function)

Successful synchroni zation of a put operation neans the source data has been witten to the destination |ocation and
get operations issued subsequently by any thread (or load instructions issued by the destination node) will receive
the new val ue or a subsequently witten val ue (assum ng no other threads are witing the |ocation)

There are two categories of non-bl ocki ng operations
"explicit handle" (nb) - return a specific handle to caller which is used for synchronization
this handl e can be used to synchronize a specific subset of the nb operations in-flight
"inmplicit handle" (nbi) - don't return a handle - synchroni zation is acconplished
by calling a synchronization routine that synchronizes all outstanding nbi operations

Note that the order in which non-bl ocking operations conplete is intentionally unspecified - the systemis free to
coal esce and/or reorder non-bl ocking operations with respect to other bl ocking or non-bl ocki ng operations, or
operations initiated froma separate thread - the only ordering constraints that nust be satisfied are those
explicitly enforced using the synchroni zation functions (i.e. the non-blocking operation is only guaranteed to occur
somewhere in the interval between initiation and successful synchronization on that operation)

I mpl enentors should attenpt to nake the non-blocking initiation operations return as quickly as possible - however
in sonme cases (e.g. when a large nunber of non-bl ocki ng operations have been issued or the network is otherw se busy)
it may be necessary to block tenporarily while waiting for the network to becone available. In any case, al
i mpl ement ati ons nust support an unlimted nunber of non-bl ocking operations in-progress - that is, the client is free
to issue an unlimted nunmber of non-bl ocking operations before issuing a sync operation, and the inplenmentation nust
handl e this correctly w thout deadl ock or |ivel ock

Non- bl ocki ng nenory-to-menory transfers (explicit handle)

The explicit-handl e non-bl ocking data transfer functions return a gasnet_handl e_t value to represent the non-bl ocking
operation in flight. gasnet_handle_t is an opaque type whose contents are inplenentation-defined, with one exception -
every inplenentation nust provide a val ue corresponding to an "invalid" handl e (GASNET_I NVALI D_HANDLE) and furthernore
this value nmust be the result of setting all the bytes in the gasnet_handle_t datatype to zero. Inplenentators are
free to define the gasnet_handle_t type to be any reasonabl e and appropriate size, although they are recommended to
use a type which fits within a single standard register on the target architecture. In any case, the datatype shoul d
be wi de enough to express at |east 2716-1 different handle values, to prevent limiting the number of non-bl ocking
operations in progress due to the nunber of handles available. It _is_legal for clients to pass gasnet_handl e_t

val ues into function callees or back to function callers

In the case of multithreaded clients (GASNET_PAR or GASNET_PARSYNC), gasnet_handl e_t values are thread-specific. In
other words, it is an error to obtain a handle value by initiating a non-bl ocking operation on one thread, and |ater
pass that handle into a synchroni zation function froma different thread

Any explicit-handl e, non-bl ocking operation may return GASNET_I NVALI D HANDLE to indicate it was possible to conplete
the operation inmrediately w thout blocking (e.g. operations where the "renpte" node is actually the |ocal node)

It is always an error to discard the gasnet_handl e_t value for an explicit-handl e operation in-flight - i.e. to
initiate an operation and never synchronize on its conpletion

gasnet _handl e_t gasnet_get_nb (void *dest, gasnet_node_t node, void *src, size_t nbytes)
gasnet _handl e_t gasnet_put_nb (gasnet _node_t node, void *dest, void *src, size_t nbytes)

Non- bl ocki ng get/put functions for aligned data. These functions operate simlarly to their blocking counterparts
except they initiate a non-bl ocking operation and return imediately with a handl e (gasnet_handle_t) which nust |ater
be used (by calling a explicit syncnb function), to synchronize on conpletion of the non-blocking operation. The
contents of the destination menory address are undefined until a synchronization conpl etes successfully for the non-
bl ocki ng operation. For the put version, the source nenory nay be safely overwitten once the initiation function
returns.

gasnet _handl e_t gasnet_get_nb_bul k (void *dest, gasnet_node_t node, void *src, size_t nbytes)
gasnet _handl e_t gasnet_put_nb_bul k (gasnet_node_t node, void *dest, void *src, size_t nbytes)

Non- bl ocki ng get/put functions for bulk (unaligned) data. For the put version, the source nenory may _NOT_ be safely
overwitten until a successful synchronization for the operation. |f the contents of the source nmenory change while
the operation is in progress the result will be inplenmentation-specific. These otherw se behave identically to the
non-bul k variants (but are likely to be optim zed for |arge transfers).

gasnet _handl e_t gasnet _nmenset _nb (gasnet _node_t node, void *dest, int val, size_t nbytes)

23

Non- bl ocki ng operation that executes nenset(dest, val, nbytes) on the given node (and has the sane senmantics as that
function). The synchroni zati on behavior is identical to a non-bl ocking explicit-handl e put operation (the
gasnet _handl e_t return val ue nust be synchroni zed using an explicit-handl e synchroni zati on operati on)

Synchroni zation for explicit-handl e non-bl ocki ng operations

GasNET supports two basic types of synchronization for non-bl ocking operations - trying (polling) and waiting
(bl ocking). Al explicit-handle synchronization functions take one or nore gasnet_handl e_t values as input and either
return an indication of whether the operation has conpleted or block until it conpletes

voi d gasnet_wait_syncnb(gasnet _handl e_t handl e)
int gasnet_try_syncnb(gasnet _handl e_t handl e)

Synchroni ze on the conpletion of a single specified explicit-handl e non-bl ocking operation that was initiated by the
calling thread

gasnet _wait_syncnb() blocks until the specified operation has conpleted (or returns inmmediately if it has already
conpleted). In any case, the handle value is "dead" after gasnet_wait_syncnb() returns and may not be used in future
synchroni zati on operations

gasnet _try_syncnb() always returns imediately, with the value GASNET_OK if the operation is conplete (at which point
the handl e value is "dead", and may not be used in future synchronization operations), or GASNET_ERR NOT_READY if the
operation is not yet conplete and future synchronization is necessary to conplete this operation

It is legal to pass GASNET_I NVALI D HANDLE as input to these functions - gasnet_wait_sync(GASNET_I NVALI D_HANDLE)
returns i medi ately and gasnet _try_sync(GASNET_I| NVALI D_HANDLE) returns GASNET_OK

It is an error to pass a gasnet_handl e_t value for an operation which has already been successfully synchroni zed using
one of the explicit-handle synchronization functions

voi d gasnet_wait_syncnb_al |l (gasnet _handle_t *, int nunmhandl es)
int gasnet_try_syncnb_all (gasnet_handle_t *, int numhandl es)

Synchroni ze on the conpletion of an array of non-bl ocking explicit-handl e operations (all of which were initiated by
this thread). numhandl es specifies the nunber of handles in the provided array of handl es. gasnet_wait_syncnb_all ()

bl ocks until all the specified operations have conpleted (or returns immediately if they have all already conpl eted)

gasnet _try_syncnb_all always returns imediately, with the value GASNET_OK if all the specified operations have

conpl eted, or GASNET_ERR NOT_READY if one or nmore of the operations is not yet conplete and future synchronization is
necessary to conplete sone of the operations

Both functions will nodify the provided array to reflect conpletions - handl es whose operations have conpleted are
overwitten with the val ue GASNET_I NVALI D_HANDLE, and the client may test against this val ue when

gasnet _try_syncnb_all () returns GASNET_ERR NOT_READY to determ ne which operations are conplete and which are stil
pendi ng.

It is legal to pass the value GASNET_I NVALI D_HANDLE in sone of the array entries, and both functions will ignore it so
that it has no effect on behavior. For exanple, if all entries in the array are GASNET_I| NVALI D HANDLE (or
numhandl es==0), then gasnet_try sync_all _list() will return GASNET K

voi d gasnet_wait_syncnb_sonme(gasnet _handle_t *, int numhandl es)
int gasnet_try_syncnb_sonme (gasnet_handle_t *, int numhandl es)

These operate anal ogously to the syncnb_all variants, except they only wait/test for at |east one operation
corresponding to a _valid_ handle in the provided list to be conplete (the valid handl es values are all those which
are not GASNET_| NVALI D HANDLE). Specifically, gasnet_wait_syncnb_sonme() will block until at |east one of the valid
handles in the list has conpleted, and indicate the operations that have conpleted by setting the correspondi ng
handl es to the val ue GASNET_I NVALI D HANDLE. Similarly, gasnet_try_syncnb_sone will check if at |east one valid handle
inthe list has conpleted (setting those conpleted handl es to GASNET | NVALI D HANDLE) and return GASNET _OK if it
detected at |east one conpletion or GASNET_ERR NOT_READY ot herwi se

Bot h functions ignore GASNET_| NVALI D_HANDLE val ues so those val ues have no effect on behavior. If the input array is
enpty or consists only of GASNET_ | NVALI D HANDLE val ues, gasnet_wait_sync_sone_list will return i mediately and
gasnet _try_sync_sone_list will return GASNET_OK

Non- bl ocki ng nenory-to-nmenory transfers (inplicit handle)

voi d gasnet _get _nbi (void *dest, gasnet_node_t node, void *src, size_t nbytes)
voi d gasnet _put _nbi (gasnet _node_t node, void *dest, void *src, size_t nbytes)
voi d gasnet _get _nbi _bul k (void *dest, gasnet_node_t node, void *src, size_t nbytes)
voi d gasnet _put_nbi _bul k (gasnet_node_t node, void *dest, void *src, size_t nbytes)

Non- bl ocki ng get/put functions for aligned and unaligned (bul k) data. These functions operate sinmlarly to their
explicit-handl e counterparts, except they do not return a handle and nust be synchroni zed using the inplicit-handle
synchroni zati on operations. The contents of the destination menory address are undefined until a synchronization

conpl etes successfully for the non-bl ocking operation. As with the explicit-handl e variants, the source nmenory for the
non- bul k put operation nay be safely overwitten once the initiation function returns, but the bulk put version
requires the source nmenory to renmai n unchanged until the operation has been successfully conpleted using a
synchroni zati on.

24

Synchroni zation for inplicit-handl e non-blocking operations

Synchroni ze on the outstanding inplicit-handl e non-bl ocki ng operations

In the case of multithreaded clients, inplicit-handle synchronization functions only synchroni ze the inplicit-handle
non- bl ocki ng operations initiated fromthe calling thread. Operations initiated by other threads sharing the GASNet
interface proceed independently and are not synchronized. Inplicit-handl e synchronization functions will synchronize
operations initiated within other function frames by the calling thread (but this cannot affect the correctness of
correctly synchroni zed code)

voi d gasnet_wait_syncnbi _gets()
voi d gasnet_wait_syncnbi _puts()
voi d gasnet_wait_syncnbi _all ()
int gasnet_try_syncnbi _gets()
int gasnet_try_syncnbi _puts()
int gasnet_try_syncnbi _all()

These functions inplicitly specify a set of non-bl ocking operations on which to synchroni ze. They synchroni ze on a set
of outstandi ng non-bl ocking inplicit-handl e operations initiated by this thread - either all such gets, all such puts
or all such puts and gets (where outstanding is defined as all those inplicit-handle operations which have been
initiated (outside an access region) but not yet conpleted through a successful inplicit synchronization). The wait
variants block until all operations in this inplicit set have conpleted (indicating these operations have been
successfully synchronized). The try variants test whether all operations in the inplicit set have conpl eted, and
return GASNET_OK if so (which indicates these operations have been successfully synchronized) or GASNET_ERR_NOT_READY
otherwi se (in which case _none_ of these operations nmay be considered successfully synchronized)

If there are no outstanding inplicit-handl e operations, these synchronization functions all return imediately (with
GASNET_OK for the try variants)

I npl enentor's Note

Some i npl enent ati ons may choose to synchroni ze operations from other independent threads as well, but they nust ensure
progress for the calling thread in the presence of another thread which is continuously initiating inplicit-handle
non- bl ocki ng operations

Implicit access region synchronization

In sone cases, it nay be useful or desirable to initiate a nunber of non-bl ocki ng shared-nenory operations (possibly
wi t hout knowi ng how nany at conpile-tine) and synchronize themat a later tine using a single, fast synchronization
Sinple inplicit handl e synchroni zati on may not be appropriate for this situation if there are intervening inplicit
accesses which are not to be synchroni zed

This situation could be handl ed using explicit-handl e non-bl ocking operations and a list synchronization (e.g

gasnet _wait_syncnb_all()), but this nmay not be desirable because it requires nanaging an array of handles (which could
have negative cache effects on perfornmance, or could be expensive to allocate when the size is not known unti

runtime).

To handl e these cases, we provide "inplicit access region" synchronization, described bel ow.

voi d gasnet _begi n_nbi _accessregi on();
gasnet _handl e_t gasnet _end_nbi _accessregi on();

gasnet _begi n_nbi _accessregi on() and gasnet_end_nbi _accessregion() are used to define an inplicit access region (any
code which dynamically executes between the begin and end calls is said to be "inside" the region)

The begin and end calls nust be paired, and may not be nested recursively or the results are undefined

It is erroneous to call any inplicit-handl e synchronization function within the access region

Al inmplicit-handl e non-bl ocking operations initiated inside the region become "associated" with the abstract access
region handl e being constructed. gasnet_end_nbi _accessregion() returns an explicit handle which collectively
represents all the associated inplicit-handl e operations (those initiated within the access region)

This handl e can then be passed to the regul ar explicit-handl e synchronization functions, and will be successfully
synchroni zed when all of the associated non-bl ocki ng operations initiated in the access regi on have conpl et ed

The associ ated operations cease to be inplicit-handl e operations, and are _not_ synchroni zed by subsequent calls to
the inplicit-handl e synchronization functions occurring after the access region (e.g. gasnet_wait_syncnbi_all())
Explicit-handl e operations initiated within the access region operate as usual and do _not_ becone associated with the
access region.

Sanpl e code:
gasnet _begi n_nbi _accessregion(); // begin the access region
gasnet _put_nbi _shared(...); // becones associated with this access region

while (...)
gasnet _put _nbi _shared(...); // becones associated with this access region
}

h2 = gasnet _get _nb_shared(...); // unrel ated explicit-handl e operation not associated with access region
gasnet _wai t _syncnb(h2);

handl e = gasnet _end_nbi _accessregion(); // end the access region and get the handl e

25

/1 other code, which nay include unrelated inplicit-handle operations+syncs, or other regions, etc
gasnet _wait_syncnb(handle); // wait for all the operations associated with the access region to conplete

Regi st er-nenory operations

Regi ster-nmenory operations allow client code to avoid forcing comuni cated data to pass through the | ocal mnenory
system Some interconnects nmay be able to take advantage of this capability and launch renmote puts directly from
registers or recieve renbpte gets directly into registers

Val ue Put

voi d gasnet _put _val (gasnet _node_t node, void *dest, gasnet_register_value_t value, size_t nbytes)
gasnet _handl e_t gasnet_put_nb_val (gasnet_node_t node, void *dest, gasnet_register_value_t value, size_t nbytes)
voi d gasnet _put _nbi _val (gasnet _node_t node, void *dest, gasnet_register_value_t value, size_t nbytes)

Regi ster-to-rempte-nenory put - these functions take the value to be put as input paranmeter to avoid forcing outgoing
values to local nmenory in client code

O herwi se, the behavior is identical to the nmenory-to-nenory versions of put above

requires: nbytes > 0 && nbytes <= SI ZEO-_GASNET_REQ STER VALUE_ T

The value witten to the target address is a direct byte copy of the 8*nbytes |oworder bits of value, witten with
the endi anness appropriate for an nbytes integral value on the current architecture

t he non-bl ocking forns of value put must be synchronized using the explicit or inplicit synchronization functions
defined above, as appropriate

Bl ocki ng Val ue Get

gasnet _regi ster_val ue_t gasnet_get_val (gasnet_node_t node, void *src, size_t nbytes)

Bl ocki ng value get - this function returns the fetched value to avoid forcing incomng values to local nenory in
generated code (on architectures which pass the return value in a register)

O herwi se, the behavior is identical to the nenory-to-nmenory bl ocki ng get

requires: nbytes > 0 && nbytes <= SI ZEOF_gasnet REQ STER VALUE_ T

The value returned is the one obtained by reading the nbytes bytes starting at the source address with the endi anness
appropriate for an nbyte integral value on the current architecture and setting the high-order bits (if any) to zero
(i.e. no sign-extension)

Non- Bl ocki ng Val ue Get (explicit-handle)

This operates simlarly to the bl ocking formof value get, but is split-phase
split-phase value gets are synchroni zed i ndependently of all other operations in gasnet

typedef ??? gasnet_val get _handl e_t;
gasnet _val get _handl e_t gasnet_get_nb_val (gasnet _node_t node, void *src, size_t nbytes)
gasnet _regi ster_val ue_t gasnet_wait_syncnb_val get (gasnet _val get _handl e_t handl e)

gasnet _get _nb_val initiates a non-bl ocking val ue get and returns an explicit handl e which MJST be synchroni zed using
gasnet _wait_syncnb_val get ()

gasnet _wait_syncnb_val get () synchroni zes an outstandi ng get_nb_val operation and returns the retrieved val ue as
described for the bl ocking version

Not e t hat gasnet _val get _handl e_t and gasnet _handl e_t are conpletely different datatypes and may not be interm xed
(i.e. gasnet_valget_handle_t's cannot be used with other explicit synchronization functions, and gasnet_handle_t's
cannot be passed to gasnet_wait_syncnb_val get ()

The gasnet_val get _handle_t type is conpletely opaque (with no special "invalid" value), although inplenentors are
recommended to make sizeof (gasnet_val get _handl e_t) <= sizeof (gasnet_register_value_t) to facilitate register reuse
There is no try variant of value get synchronization, and no inplicit-handle variant

Barriers:

Execute a parallel split-phase barrier with the given barrier identifier across all nodes in the job

Note that the barrier wait/notify functions should only be called once (i.e. by one representative thread) on each
node per barrier phase

The client must synchronize its own accesses to the barrier functions and ensure that only one thread is ever inside a
gasnet barrier function at a tinme (esp. gasnet_barrier_try()).

voi d gasnet_barrier_notify(int id)

Execute the notification for a split-phase barrier, with a barrier val ue

This is a non-blocking operation that conpletes imediately after noting the barrier val ue

No synchroni zation is perforned on outstandi ng non-bl ocki ng nenory operations

Generates a fatal error if this is the second call to gasnet_barrier_notify() on this node since the last call to
gasnet _barrier_wait() or the beginning of the program

If id == GASNET_ANONYMOUS_BARRI ER then the barrier is anonynous and has no specific id.

int gasnet_barrier_wait(int id)

26

Execute the wait for a split-phase barrier, with a barrier val ue
This is a blocking operation that returns only after all renote nodes have call ed gasnet_barrier_notify()
No synchronization is performed on outstandi ng non-bl ocki ng nmenory operations

Generates a fatal error if there were no preceding calls to gasnet_barrier_notify() on this node, or if this is the
second call to gasnet_barrier_wait() (or successful call to gasnet_barrier_try()) since the last call to

gasnet _barrier_notify() on this node

On a GASNET_PAR or GASNET_PARSYNC configuration, the thread calling gasnet_barrier_notify() is permtted to differ
fromthe thread which calls the paired gasnet_barrier_wait(), but the ordering between the calls nust still be

mai nt ai ned

Ret urns GASNET_ERR BARRI ER M SMATCH i f the supplied barrierval doesn't match the val ue provided in the preceding
gasnet _barrier_notify() call nade by this node or any other node in this synchronization phase

O herwi se, returns GASNET_OK to indicate that all nodes have called a matching gasnet_barrier_notify() and the barrier
phase is conplete

int gasnet_barrier_try(int id)

gasnet _barrier_try() functions simlarly to gasnet_wait(), except that it always returns inmediately.

If the barrier has been notified by all nodes, the call behaves as a call to gasnet_barrier_wait() with the sane
barrierval, and returns GASNET_OK (or GASNET_ERR BARRI ER M SMATCH in the case a msmatch is detected)

If the barrier has not yet been notified by sone node, the call is a no-op and returns the val ue GASNET_ERR NOT_READY
Cenerates a fatal error if there were no preceding calls to gasnet_barrier_notify() on this node, or if this is the
second call to gasnet_barrier_wait() (or successful call to gasnet_barrier_try()) since the last call to

gasnet _barrier_notify() on this node

#defi ne GASNET_BEG N_FUNCTI ON() ?2?

This macro may _optionally_ be placed at the top of functions which make calls to the extended API. It has no runtinme
semantics, but it may provide a performance boost on some inplenmentations (especially in functions which make multiple
calls to the extended APl - e.g. it provides the inplementation with a place for mninmal per-function initialization

or tenporary storage that may be hel pful in anortizing inplenmentation-specific overheads)
When used, it nmust appear only at the very beginning of the function (before any declarations or calls to the APl in
that function).

27

