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Abstract 

This document is a deliverable for milestone STPM17-6 of the Exascale Computing Project, 
delivered by WBS 2.3.1.14.  It reports on the improvements in performance observed on Cray 
XC-series systems due to enhancements made to the GASNet-EX software.  These 
enhancements, known as “specializations”, primarily consist of replacing network-
independent implementations of several recently added features with implementations 
tailored to the Cray Aries network.  Performance gains from specialization include (1) 
Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to 14%, (2) 
Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-
bulk RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% 
faster than the reference on a point-to-point test and allows a hot-spot test to scale robustly, 
and (5) non-contiguous RMA interfaces see up to 8.6x speedups for an intra-node benchmark 
and 26% for inter-node.  These improvements are available in the GASNet-EX 2018.3.0 
release. 

  



 ii 

Acknowledgements 

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-
SC-20-SC, a collaborative effort of two DOE organizations – the Office of Science and the 
National Nuclear Security Administration – responsible for the planning and preparation of a 
capable exascale ecosystem – including software, applications, hardware, advanced system 
engineering, and early testbed platforms – to support the nation's exascale computing 
imperative. 

This research used resources of the National Energy Research Scientific Computing Center, a 
DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of 
Energy under Contract No. DE-AC02-05CH11231. 

This research used resources of the Argonne Leadership Computing Facility, which is a DOE 
Office of Science User Facility supported under Contract DE-AC02-06CH11357. 

Copyright 

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory 
under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.  The U.S. 
Government retains, and the publisher, by accepting the article for publication, acknowledges, 
that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to 
publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. 
Government purposes. 

Legal Disclaimer 

This document was prepared as an account of work sponsored by the United States 
Government.  While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or assumes 
any legal responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights.  Reference herein to any specific commercial product, process, or 
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof, or the Regents of the University of California. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof or the Regents of the University of California.



 

 1 

Introduction 

The GASNet (Global Address Space Networking) communication layer has a proven track 
record of enabling high performance across many interconnects and supporting a wide range 
of applications and high-level programming abstractions.  Under funding from the Exascale 
Computing Project (ECP) we are designing and implementing GASNet-EX, a second-generation 
GASNet API, which is focused on exascale requirements and incorporates over 15 years of 
lessons-learned.  

Throughout this three-year project, the GASNet-EX developers are providing quarterly 
software releases to make new features and performance improvements available to ECP-
funded developers.  This report will use the GASNet-EX numbers, such as “2017.9.0”, to refer 
to the software releases made in the corresponding calendar months (e.g., 2017.9.0 denotes 
the release in September 2017). 

The 2017.6.0 release of GASNet-EX introduced three new features, known as “New Active 
Message Interfaces”, “Immediate Operations” and “Local Completion”.  The 2017.12.0 release 
introduced a new “Remote Atomic” feature.  These two releases contain network-independent 
“reference” implementations of these features, which provide implementations in terms of the 
pre-existing functionality available in GASNet-EX on all networks.  While these reference 
implementations are correct and functionally complete, in general they cannot provide the 
best performance on every network.  We use the term “specialization” to describe the process 
of providing network-specific implementations of a given feature to obtain improvements on a 
given target platform, such as higher speeds or lower resource utilization.  The focus of 
specialization in this report is GASNet-EX’s support for the Cray Aries network used in Cray 
XC-series systems, and the term “aries-conduit” is used to denote the code implementing this 
support. 

This report describes the speed improvements observed due to specialization in aries-conduit 
of the four features listed above, specializations which were required components of the 
2017.12.0 and 2018.3.0 releases of GASNet-EX.  Additionally, we report on two additional 
specializations, not required for any milestone, related to the implementation of “Expanded 
VIS Interfaces”, a feature introduced in the 2017.12.0 release.  The remainder of this report 
consists of sections that each report on a given specialization and the observed performance 
improvement it yields.  To keep these sections focused, a separate Appendix provides more 
detailed descriptions of the HPC systems and testing methodologies used to measure 
performance. 

Negotiated-Payload Active Messages 

One portion of the “New Active Messages Interfaces” introduced in the 2017.6.0 release was 
“Negotiated-Payload AMs” (NP-AM).  This is a set of split-phase interfaces that complement 
the traditional AM interfaces (now dubbed “Fixed-Payload” or “FP-AM” to distinguish them) 
for Medium and Long Active Messages.  While the Fixed-Payload AMs take an address and 
length of the caller’s buffer, the Negotiated-Payload interfaces take an optional address and a 
range of lengths in a “Prepare” call.  The result of the Prepare call provides a maximum length.  
If no address was passed by the caller it also provides a buffer allocated by GASNet-EX.  This 
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enables a pattern in which the client allows GASNet-EX to allocate the buffer and then 
assembles its payload into the GASNet-allocated buffer.  The communication is injected by the 
second phase “Commit” call in which the client provides an actual length, handler index and 
handler arguments. 

For many networks, the use of a GASNet-allocated NP-AM buffer has the potential to eliminate 
a memcpy() from the critical path in the case that the client did not already have its payload 
instantiated in a contiguous buffer.  Another usage case for NP-AM is for “streaming” of large 
transfers through multiple Medium or Long AMs.  In this case, the client passes their total 
length to the Prepare call and the implementation may respond with a length larger than the 
normal maximum for a Fixed-Payload AM, if the current resource allocation state permits.  
This mode of operation can result in improved performance by streaming large transfers 
through a smaller number of larger messages, but requires the client to be adaptable to the 
sizes sent.  

The reference implementation of NP-AM was present in the 2017.12.0 release of GASNet-EX, 
and used by all conduits.  The 2018.3.0 release contains the specialization of NP-AM for 
Medium Request and Reply on aries-conduit, as well as a significantly rewritten reference 
implementation to ease specialization for additional conduits in the future.  This rewrite also 
improves the performance of NP-AM through shared-memory and loopback.  

While one of the goals of NP-AM is to eliminate a memcpy() from the critical path for certain 
usage cases, the reference implementation does not achieve this because it lacks access to the 
network-specific logic which manages the buffers used for sending AMs.   The Aries 
specialization consisted of splitting the implementation of Medium AM injection into an 
internal split-phase version, and structuring both outward-facing interfaces (FP-AM and NP-
AM) in terms of this new internal interface.  
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Figure 1. Speedup of AM Medium Ping-Pong with Dynamically Generated Payload 

The results in Figure 1 demonstrate both the weakness of the reference implementation of 
NP-AM, and the strength of the Aries-specialized implementation.  The data illustrates the 
performance of a simple ping-pong test using AM Medium with both implementations of NP-
AM, leveraging the GASNet-allocated buffer described above.  This data is normalized to the 
performance of the same test using FP-AM.  The data up to and including 4kiB messages show 
that while the reference implementation uniformly under-performs FP-NP, the Aries-
specialized NP-AM uniformly meets or exceeds the performance of FP-AM (by up to about 
6%).  

The data for message sizes above 4kiB (with a grey background) show a non-default 
configuration of GASNet-EX in which the maximum size of a Medium payload has been 
increased to 64kiB.  The data is presented here to show that the advantage of NP-AM 
continues to grow with the payload size (to over 14% at 64kiB).  This will be directly relevant 
when NP-AM Long is specialized, and when future work on scalable buffer management in 
aries-conduit increases the default for the maximum Medium payload. 

Immediate Operations 

The “Immediate Operations” feature, introduced in the 2017.6.0 release of GASNet-EX, allows 
(but does not require) operations to return a distinguishing value during attempts at 
communication injection that encounter backpressure, such as due to flow control or any 
temporary lack of necessary resources.  This allows clients of GASNet-EX to avoid stalling on 
injection (for example, due to head-of-line blocking) especially in cases such as work-stealing 
where the client may be able to pursue alternate useful actions.  This behavior is optional, and 
clients may request it by passing an IMMEDIATE flag during communication injection.  Since 
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the nature of the feature is to permit a behavior without requiring it, the reference 
implementation of Immediate Operations is to trivially ignore the flag. 

A complete (non-trivial) implementation of Immediate Operations in aries-conduit involved 
changes to several RMA and AM paths to allow them to “unwind” after encountering a 
transient resource shortage.  Unwinding from partial resource acquisition required more 
significant changes to the AM code path than were applied to the RMA paths, which use only a 
single Cray GNI post descriptor resource.  All contiguous point-to-point communication 
operations in aries-conduit currently honor the IMMEDIATE flag, returning immediately if 
sufficient resources are not available to begin the operation. 

The data in Figure 2 show results from a benchmark that mimics a simple client that 
optionally uses Immediate Operations to avoid head-of-line blocking in an AM-based 
communication.  In the absence of Immediate Operations, the client cannot know if a given AM 
Request injection call will complete quickly, versus stalling due to backpressure.  Those calls 
that stall due to backpressure may consume a significant amount of time before returning and 
permitting the client to proceed to issuing the next call.  However, by using Immediate 
Operations such calls can be made to “fail quickly”, allowing the client to proceed to issue 
other AM Request calls (e.g., to different peers), and to retry the failed one at a later time.  

The figure shows the reduction in communication times for the variant of the benchmark 
using Immediate Operations, relative to the variant without.  Both variants eventually 
complete the same communication operations, but not in the same order.  Use of Immediate 
Operations allows a static communication schedule to be replaced by a dynamic (reactive) 
schedule. 

Figure 2. Reduced Communication Delays Using Immediate Active Messages 
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In the “Full Block” series the static schedule requires rank 0 to send the entire volume of 
messages to each of the other ranks before it may send to another, and the use of Immediate 
Operations to avoid the backpressure that results provides sizable reductions in the total time 
to complete the communication (by up to 93%).  The “Blocksize=5” series requires that rank 0 
send five messages to each rank before it may send to another, though this repeats until the 
same volume of messages has been sent.  In this series the amount of backpressure 
encountered is less and the advantage due to Immediate Operations is also less, though still 
significant (up to 81%).  Finally the “Cyclic” series shows the results for a static schedule that 
has rank 0 communicate “round robin” with the other ranks.  This is intuitively the optimal 
static schedule for this test, since it maximizes the time between sends to any given rank.  
However, even in this case there appears to be a small advantage (averaging slightly over 3%) 
to the use of Immediate Operations.  The probability that any given communication operation 
will encounter backpressure is quite low for this schedule, and the majority of the advantage 
seen for use of Immediate Operations in the Cyclic case is likely due to a marginally lower cost 
for successful AM Request operations due to the lack of polling to recover resources (since 
failure due to their lack is permitted). 

Local Completion 

In GASNet we use the term “local completion” to denote when a client-provided buffer to a 
communication injection operation (such as the source of an RMA Put) can safely be 
overwritten or freed by the client.  In GASNet-1 [1], non-blocking Put operations are available 
in “bulk” or “non-bulk” variants.  A call to initiate a non-bulk Put delays returning until after 
local completion.  Initiation of a bulk Put returns before ensuring local completion, without 
any means to separate it from remote completion of the entire Put operation.  GASNet-EX 
retains those two options, but adds the ability to test (or wait) for local completion between 
the return from initiation and the synchronization on remote completion.  The goal of this 
specialization was to implement the GASNet-EX local completion semantics for RMA Puts as 
efficiently as possible using the facilities of the Aries network exposed by Cray GNI. 

In GASNet-1, aries-conduit already provided distinct implementations of “bulk” and “non-
bulk” RMA Puts.  Therefore, the focus of this specialization was to expose the GASNet-EX event 
that clients can use to test (or wait) for local completion.  Initially, GASNet-EX aries-conduit 
utilized the low-performance reference implementation approach of blocking (as in a non-
bulk Put) for local completion when the corresponding event was requested.  The basis of this 
specialization work for local completion was the ability to independently request GNI-level 
completion queue events for local and global completion, thereby achieving independent 
GASNet-EX-level events.  In the process of exposing the GASNet-EX local completion event, we 
discovered an opportunity to significantly improve the performance of the non-bulk Puts by 
using the same GNI-level facilities. 
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Figure 3. Performance Improvement for Non-Bulk RMA Puts 

 

Figure 3 illustrates the performance improvement obtained by applying this approach to the 
GASNet-EX equivalent to GASNet-1’s non-bulk Puts.  The new implementation matches or 
exceeds the performance of the previous implementation, providing a bandwidth 
improvement of up to 32% (at 8KB payload size), illustrating the non-optimal behavior of the 
previous implementation (which did not utilize the GNI-level local completion event). 

Remote Atomics 

Remote Atomics were introduced as a new feature in the 2017.12.0 release of GASNet-EX, and 
provide interfaces to perform a rich set of operations atomically on several data types in 
distributed memory.  The GASNet-EX design for Remote Atomics is derived from that used in 
UPC [3], in that operations are performed with respect to an “atomic domain” that is created 
with one data type and a set of atomic operations and then used to initiate those operations 
on data of the given type.  This design allows for runtime selection of the fastest-available 
implementation that can correctly provide the set of atomic operations needed by the 
application.  This is important because in general one cannot mix atomics that are offloaded to 
a NIC with others implemented using the CPU, as this would suffer from coherency problems 
on many modern systems.  The atomic domains approach addresses this issue by selecting 
NIC offload implementations if and only if the entire application-specified set of operations 
can be offloaded, and a CPU-based implementation otherwise.  Unlike the UPC atomics, 
GASNet-EX includes only non-blocking interfaces for atomics (amongst other differences). 

The 2017.12.0 release of GASNet-EX included a complete reference implementation of this 
subsystem based on Active Messages (AM), and using CPU-based atomic instructions to 
perform the memory accesses (utilizing our GASNet-Tools library, which implements all the 
necessary local-memory CPU atomics on an extremely wide variety of architectures and 
compilers).  Additionally, that release contained an initial specialization for the atomic 
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operation capabilities of the Cray Aries NIC, completed in the subsequent 2018.3.0 release.  
This specialization consists of logic to check at the time an atomic domain is created whether 
or not the requested data type and operations set are supported by the Aries NIC, and the 
code to use the Cray GNI functions which initiate and complete Aries-offloaded atomic 
operations. 

In Table 1 we show that Aries specialization of Remote Atomics delivers at least a 1.7x 
improvement on a simple point-to-point test of the atomic fetch-and-add (FADD) operation, 
relative to the network-independent reference implementation over AM.  

Table 1. Remote Atomics Speedup Due to Aries Specialization 

Data Type 

FADD Latency FADD Throughput 

AM 
Reference 

Aries 
Specialized Ratio 

AM 
Reference 

Aries 
Specialized Ratio 

32-bit unsigned integer 4.9 us 2.9 us 1.7 429 kop/s 745 kop/s 1.7 

64-bit unsigned integer 4.9 us 2.8 us 1.7 424 kop/s 742 kop/s 1.8 

In addition to the 1.7x advantage on a point-to-point test, the Aries-specialized atomics show 
greatly improved scalability in a many-to-one atomics “hot-spot” test.  Figure 4 shows results 
on Theta of such a benchmark in which all 64 cores on one or more compute nodes 
simultaneously perform 64-bit unsigned integer FADD operations on a single location (on 
rank = 0).  The figure shows the aggregate FADD throughput as a function of the number of 
processes.  The data shows that as the process count increases, the aggregate performance of 
the AM-based reference implementation actually drops (due to overheads of message 
reception dominating).  Meanwhile the performance of the Aries-specialized version rises 
steadily as the node count increases from 1 to 8 (64 to 512 processes), and continues to rise 
gradually from that point to the highest concurrency measured (128 nodes = 8192 processes).  
For comparison, the “Perfect Scaling” line (in red at the upper-left of the figure) shows the 
throughput of a single-process run scaled by the process count. 

Figure 4. Weak Scaling of 64-bit Unsigned Integer FADD Hot-Spot Test 
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Vector-Index-Strided (VIS): Overview 

The term Vector-Indexed-Strided (VIS) refers to the three forms of metadata used to describe 
the payload in a non-contiguous GASNet transfer. The interfaces for non-contiguous data 
transfer are therefore collectively known as “VIS Interfaces”. The GASNet-1 specification [1] 
lacks official interfaces for non-contiguous data, which prior to the EX work existed only as an 
unofficial proposed extension [2]. The 2017.12.0 release of GASNet-EX delivered an untuned, 
network-independent implementation of Expanded VIS Interfaces, making them an official 
part of GASNet-EX and expanding upon their functionality in several ways. 

The expansion involved changes to the function arguments and corresponding updates to the 
constraints on these arguments. The most significant outcome of these interface changes is 
the new ability to express Strided N-dimensional rectangular transfers that transpose or 
reflect elements across coordinate axes. The updated interfaces also support the same new 
capabilities that GASNet-EX has added to the contiguous Remote Memory Access (RMA) 
interfaces (including teams and immediate operations, among others).  

The 2018.3.0 release implements the new VIS capabilities: most notably Strided transposes 
and reflections, and teams and immediate support for all variants. The VIS implementation for 
each of the three categories includes several low-level transfer mechanisms, and the 
mechanism used to satisfy a given operation is selected based on the operation parameters –
most notably, size of the contiguous segments and locality of the peer memory. 

The work in this quarter entailed a complete rewrite of the Strided implementation to support 
transposes and other non-translational inputs. The new Strided metadata format allows 
expression of translational and transposing copies between arbitrary rectangular sections of 
densely stored N-dimensional arrays. However even within this restricted set of inputs there 
are many possible metadata inputs that express an equivalent data transfer, and the format 
chosen by the user (e.g., to most naturally match the data structures in his application), is not 
always the most efficient format to use for actually executing the transfer. For example, the 
user may specify a 3-d strided copy with transfer parameters such that the accesses in linear 
memory are equivalent to a 1-d strided copy, where the latter representation would lead to 
more efficient packing code. The GASNet-1 Strided implementation contained some ad-hoc 
optimizations to transform the input metadata in very limited ways before executing the 
transfer. The GASNet-EX extensions to the Strided metadata format relaxed the GASNet-1 
Strided linearity requirements, further increasing the degrees of freedom for expressing 
equivalent Strided transfers. 

The rewritten Strided implementation in the 2018.3.0 GASNet-EX release includes a general 
metadata stride optimizer that applies several sophisticated optimizations to dynamically 
rewrite the input Strided metadata into a format more amenable to efficient execution. The 
optimizations performed include: 

 Null Dimension Removal – dimensions with an extent of 1 can trivially be removed 
 Stride Inversion – an optimization that ensures all strides for one end of the transfer 

are non-negative 
 Dimensional Sort – sorting of dimensions that ensures the strides for one end of the 

transfer are in non-decreasing order 
 Dimensional Folding – an optimization to remove trivial dimensions, by folding them 

together and/or into the element size.  
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The final optimization (Dimensional Folding) is the most important for performance of 
Strided (un)packing code, because it amounts to a run-time application of a loop 
transformation optimization; it reduces the nesting depth of the loop nests used to traverse 
the elements in the strided section, by unrolling inner loops over contiguous elements and 
merging amenable adjacent loops in the nesting structure. The earlier optimization passes 
mostly serve to normalize the metadata into a form most amenable to Dimensional Folding. 
The Stride Inversion and Dimensional Sort optimizations both favor normalization of the peer 
end of the transfer, increasing the linearity and contiguity size of the (potentially remote) 
segments in order to optimize for the use of initiator-driven RDMA-based mechanisms and 
favor access locality of (un)packing loops executing in AM handlers at the passive peer. 

Vector-Index-Strided (VIS): Shared-Memory Bypass 

The purpose of the work described in this report was to specialize the GASNet-EX 
implementation for the Cray XC series of supercomputers. These supercomputers include a 
variety of multi-core/many-core processor configurations – for example each node of Cori-I 
has two 16-core 2-way hyper-threaded Intel Haswell processors (for a total of 64 hyper-
threads per node), whereas each node of Cori-II has a 68-core Intel Xeon Phi processor with 4 
hardware threads per core (for a total of 272 hardware threads per node). All configurations 
of these systems feature a large number of cores/threads sharing a single cache-coherent 
physical memory domain and Aries ASIC. Consequently, the performance of intra-node 
GASNet operations (those between processes co-located on a physical node) can be very 
important, especially for applications that closely map their locality of access to match the 
hierarchical system configuration. GASNet has dedicated support to implement such intra-
node operations with minimal overhead by using shared-memory-bypass mechanisms to 
avoid the I/O bus crossings involved with activating the network hardware. 

Figure 5. Speedups due to Shared-Memory Bypass Improvements 

 

As part of this work, the shared-memory-bypass mechanism used to satisfy intra-node VIS 
operations was updated to use more efficient internal interfaces for inter-process address 
translation. Figure 5 demonstrates the bandwidth performance speedup achieved in this 
release of GASNet-EX for a range of intra-node VIS operations, relative to the bandwidth of the 
same operations using the GASNet-1 VIS implementation.  The intra-node Indexed Put 
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bandwidth for this non-contiguous access pattern improved by an average of 66.7%, due to 
the use of these more efficient internal interfaces for shared-memory bypass.  

The other series in Figure 5 show the bandwidth improvement obtained for equivalent 
Strided Put operations, ranging in dimensionality of the input metadata from 3d to 32d. In 
addition to using more efficient shared-memory bypass, these operations show further 
improvement due to the new stride optimizer. The Strided metadata for these operations are 
all amenable to Dimensional Folding down to a single dimension of actual striding. The stride 
optimizer added in GASNet-EX achieves this optimal folding resulting in the use of a data 
transfer loop with a single level of nesting for all three series, whereas the GASNet-1 
implementation of the same operation uses deeply nested loops, adding overhead and 
progressively degrading transfer performance for increasing input dimensionality. This 
results in an average improvement of 1.9x, 2.6x and 3.9x for each of 3d, 8d, and 32d 
(respectively), with a peak improvement of 8.6x at 32d. 

Vector-Index-Strided (VIS) Negotiated-Payload AM 

The VIS implementation in the 2018.3.0 GASNet-EX release also updated the Active-Message-
based mechanisms (used to service many inter-node non-contiguous network transfers) to 
optionally use the new Negotiated-Payload AM interfaces added in GASNet-EX. The main 
purpose of this upgrade was to leverage the NP-AM GASNet-allocated buffer capability, 
allowing VIS operations to pack payload data directly into the outgoing network buffer (for 
the aries-conduit specialized version of NP-AM), thus eliding the payload copy costs paid by 
the FP-AM version of this mechanism. Additionally, the mechanism was upgraded to use the 
gex_AM_Max{Request,Reply}Medium() queries added in GASNet-EX that allow fitting 
up to 64 bytes of additional payload into each AM, potentially reducing the total message 
count used to implement some operations. 

Finally, the GASNet-EX AM-based inter-node mechanism for Strided operations additionally 
benefits from the new stride optimizer – reducing both the pack/unpack costs at each process, 
and furthermore often reducing the amount of descriptor metadata sent with each Active 
Message (thanks to Dimensional Folding). 
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Figure 6. Strided Put Speedups for Fixed-Payload and Negotiated-Payload AMs 

 

The results in Figure 6 demonstrate the bandwidth speedup of inter-node Strided Puts in 
GASNet-EX using the FP-AM and NP-AM based mechanisms, relative to the bandwidth of the 
same operation using the GASNet-1 Strided implementation. The GASNet-EX FP-AM 
mechanism shows an average speedup of 7.3% and peak speedup of 23.8% relative to the 
GASNet-1 implementation (also using FP-AM). This improvement is due to the stride 
optimizer and increased network packet occupancy achieved by the new Strided 
implementation. The NP-AM mechanism shows an additional average speedup of 6.2%, which 
is due entirely to the removal of the memcpy() operation in AM Request injection enabled by 
the Aries-specialized implementation of NP-AM. 

Conclusions 

Recent releases of GASNet-EX have introduced several new features listed in the introduction 
to this report.  Each of those has a network-independent “reference implementation” that is 
correct for all networks but is not expected to be optimal for most networks.  This report 
documents our work in specializing the implementations of several of these features for the 
Cray Aries network, as released in GASNet-EX version 2018.3.0.  This report has (a) described 
these specialization efforts and (b) presented performance results highlighting the benefits of 
these specializations, as measured on NERSC’s Cori and ALCF’s Theta systems.  The results 
repeatedly show that the specialized implementations improve performance relative to 
earlier (reference or GASNet-1) implementations, validating the designs of these features and 
justifying the effort of specialization.  
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Appendix A: Experimental Methodology 

Test Platforms 

Experimental results were collected on the following Cray XC40 systems, in which nodes are 
connected via Cray Aries network hardware, and communication is performed using the 
GASNet-EX aries-conduit: 

NERSC Cori-I 
Node: dual 16-core 2.3 GHz Intel Haswell, 128 GB 
Compiler: Intel C Compiler, v18.0.0.128  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12 
Batch system: SLURM (srun) 

NERSC Cori-II 
Node: 68-core 1.4 GHz Intel Xeon Phi 7250, 96 GB DDR4 (quad-cache mode) 
Compiler: Intel C Compiler, v18.0.1.163  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.12 
Batch system: SLURM (srun) 

OLCF Theta 
Node: 64-core 1.3 GHz Intel Xeon Phi 7230, 192 GB of DDR4 (quad-cache mode) 
Compiler: Intel C Compiler, v18.0.0.128  
System software: Cray PrgEnv-intel/6.0.4, Cray PE/2.5.13 
Batch system: ALPS (aprun) 
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Methodology for Figure 1 (Negotiated-Payload Active Messages) 

These results were gathered using the testam microbenchmark that is included in the 
GASNet-EX distribution, run on ALCF’s Theta.  The exact command used for data collection 
was: 

aprun –n2 –N1 testam [-fp|-np-gb] -src-generate 250000 65472 B 

where either -fp or -np-gb was used as described below. 

All runs are point-to-point, using a single process on each of two nodes connected by the 
network fabric.  The “B” option restricts the test to reporting the performance of a ping-pong 
test using AM Mediums.  This test consists of one rank sending an AM Medium Request of a 
given size and the recipient sending an AM Medium Reply of the same size.  The first rank 
waits to receive the Reply before sending its next Request.  This Request-Reply ping-pong 
exchange is repeated 250,000 times.  The test reports the bandwidth at each size as the sum of 
the payload size of all the Requests and Replies, divided by the elapsed time to complete all of 
the iterations of that size.  With these parameters, this test is performed at the sizes 0 and 
65472, and all the powers-of-two in between. 

The –fp option causes testam to use the calls gex_AM_RequestMedium() and 
gex_AM_ReplyMedium() (the default behavior of testam).  These Fixed-Payload 
interfaces accept the address and length of a buffer allocated by the caller.  The –np-gb 
option causes the test to instead call the Negotiated-Payload interfaces gex_AM_-
PrepareRequestMedium() and gex_AM_CommitRequestMedium(), as well as the 
corresponding Reply calls, with arguments which request that the Prepare call allocate the 
buffer to be sent by the Commit call. 

The –src-generate option to testam causes the test to dynamically generate the payload 
to be sent in each and every Request or Reply, filling it with consecutive integers generated 
on-the-fly (not, for instance, by memcpy() from a prepared location).  This simulates a client 
that does not have the payload fully assembled in memory at the start of a communication.  In 
the Fixed-Payload case the data is generated into the caller-owned buffer, while in the 
Negotiated-Payload case it is generated into the buffer received from the Prepare call.  On 
aries-conduit the use of the Negotiated-Payload interface eliminates a copy from caller-owned 
memory to GASNet-owned buffers. 

Runs were performed with two copies of testam, built from aries-conduit sources with and 
without the specialized Negotiated-Payload support.  The sources without the specialization 
use the reference implementation.  The data plotted in each series shows a value collected 
using one of these two executables with the -np-gb flag, normalized by a value collected with 

the -fp flag.  These three values are, in turn, each the median of 19 runs.  Use of median was 
chosen over mean due to lower sensitivity to the low-performing outliers that are common on 
this platform. 

All of the data used for normalization (run with the –fp flag) was collected using the 
executable containing aries-specialized support for Negotiated-Payload.  However, the two 
executables show no measurable difference for the Fixed-Payload tests. 
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Methodology for Figure 2 (Immediate Operations) 

These results were gathered using the testimm microbenchmark that is included in the 
GASNet-EX distribution, run on ALCF’s Theta.  The exact command used for data collection 
was: 

aprun –nN –N1 testimm –m –b B M 

where N denotes the jobsize (1 + receiving processes), B denotes a blocksize, and M denotes a 
message count.  The B and M parameters are more fully defined below. 

With these parameters, the benchmark performs two variants of a communication pattern 
using Active Message Medium Requests.  In both variants, the rank 0 process sends a series of 
AM Mediums (of length 4032 bytes with these parameters) to the remaining processes in the 
job (the “receiving processes”), followed by a barrier.  For the duration of the communication, 
receiving processes are alternating between sleeps of length 500us and calls to test for 
completion of the non-blocking barrier.  Testing of the barrier also progresses reception of 
arriving AMs, and without such progress the test would not terminate.  The presence of sleeps 
between calls making AM progress simulates applications that alternate periods of 
computation with communication. 

In the first variant the communication is performed with a static schedule, without the use of 
the IMMEDIATE flag.  Letting N denote the job size, the schedule can be expressed using the 
following pseudo-code: 
 
 for (int k = 0; k < M; k += B) { 

  for (int j = 1; j < N; ++j) { 

   for (int i = 0; i < B; ++i) { 

    gex_AM_RequestMedium(… rank=j …); 

   } 

  } 

 } 

In other words, the rank 0 process sends groups of B consecutive messages to each receiving 
process in sequence, and this is repeated until a total of M message have been sent to each 
receiving process.   Let Tstatic denote the time to complete this schedule, including the 
subsequent barrier. 

The second variant of the communications schedule is a dynamic one using the IMMEDIATE 
flag to avoid stalling due to backpressure (which will result due to the sleeps by receiving 
processes).  The triply nested loop now describes a “nominal” schedule that would execute if 
no injection failures occur due to the IMMEDIATE flag.  However, if a gex_AM_-

RequestMedium() call does fail, this adaptive variant calls gasnet_AMPoll() once, to 
attempt recovery of resources, before retrying the same operation.  If the operation fails a 
second time, the communication advances to the next receiving process even though the 
group of B messages has not been completed.  The skipped messages are not omitted, but are 
instead deferred.   Additional logic ensures that the equivalent of the outer loop continues 
until all deferred communication is completed. 

Letting Tdynamic denote the time to complete the dynamic communication schedule, the test 
reports the reduction in communications time as a percentage of the static time: 

100% * (Tstatic – Tdynamic) / Tstatic 
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Experiments were run with values 1, 5 and M for the blocksize B, where the value M 
effectively eliminates the outer loop in the static schedule.  It should be noted that buffering at 
the AM sender is sufficient to hold at most three messages of the size used in this test before 
an inattentive receiver would result in backpressure. 

Runs were performed for several jobs sizes to collect the data shown in the figure, always 
placing one process per compute node.  As the job size varied, the message count parameter M 
was strong-scaled, taking on the value 20,000 divided by the number of receiving processes.  
Each data point is a median of 5 runs with the same parameters.  Use of median was chosen 
over mean due to lower sensitivity to the low-performing outliers that occur in approximately 
one out of every ten runs. 

Methodology for Figure 3 (Local Completion) 

These results were gathered using the testsmall RMA microbenchmark that is included in 
the GASNet-EX distribution, run on NERSC’s Cori-I.  The exact command used for data 
collection was: 

srun –n2 –N2 testsmall -m -p 50000 2097152 F 

All runs are point-to-point, using a single process on each of two nodes connected by the 
network fabric.  The selected parameters measure flood bandwidth for non-bulk explicit-
handle non-blocking RMA Put operations (corresponding to gasnet_put_nb() in GASNet-1 
and gex_RMA_PutNB(…GEX_EVENT_NOW…) in GASNet-EX), where the initiator-side 
payload does not reside in the GASNet-registered segment.  GASNet’s non-bulk Put semantics 
delay return from the injection operation until the client can freely overwrite the source 
buffer for the Put operation without affecting the result.  This stresses the throughput of the 
conduit’s Local Completion facility for RMA Puts. The payload size per Put operation was 
varied from 1 byte to 2 MB.  At each payload size, 50,000 such non-blocking Puts were 
injected back-to-back and then synchronized, and the flood bandwidth computed as the 
quotient of the total payload volume and the elapsed time. 

Runs were performed with two copies of testsmall, built from sources before and after the 
modifications to utilize the GNI-level local completion event.  

Methodology for Table 1 (Remote Atomics) 

These results were gathered using the testfaddperf Remote Atomic microbenchmark 
included in the GASNet-EX distribution, run on NERSC’s Cori-II.  The exact command used for 
data collection was: 

aprun –n2 –N1 testfaddperf 100000 

All runs are point-to-point, using a single process on each of two nodes connected by the 
network fabric.  The test reports the performance of an atomic fetch-and-add operation for 
each supported data type in terms of two metrics: latency and throughput.  The latency metric 
is measured by injection and synchronization of a single atomic operation, repeated 100,000 
times.  The reported latency is the quotient of the elapsed time for all iterations and the 
iteration count.  Injecting 100,000 atomic operations back-to-back and then synchronizing 
them all yields the throughput metric as the quotient of the operation count and the elapsed 
time. 
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Runs were performed with two copies of testfaddperf, built with and without Aries-
specialized Remote Atomics enabled at compile time (they are enabled by default).  The copy 
without the specialized atomics additionally lacked the shared-memory optimization present 
in the GASNet-EX release.  This lack significantly reduces the reported performance of the 
reference implementation for a single node (64 processes), but by doing so renders it 
comparable to the rest of the reference implementation results.   

Methodology for Figure 4 (Remote Atomics) 

These results were gathered using the testfaddperf Remote Atomic microbenchmark 
included in the GASNet-EX distribution, run on ALCF’s Theta.  The exact command used for 
data collection was: 

aprun –nN –N64 testfaddperf –S 250000 D 

where N denotes the job size in processes. 

These parameters request a single-target (hot-spot) test in which all processes issue 250,000 
64-bit unsigned integer atomic fetch-and-add operations back-to-back, targeting a single 
location on rank 0, followed by a barrier.  All processes, including rank 0 and the other 63 
processes on its compute node, are active in issuing atomic operations.  The test reports the 
throughput of each process as the number of operations divided by the time from the start of 
the first operation to completion of the barrier.  The experiment varied the number of 
compute nodes used from 1 to 128 (by powers-of-two) and ran 64 processes per node.  This 
was a weak-scaling experiment in which the 250,000 operations per process was kept fixed.  
Each data point on this figure reports the aggregate throughput of all processes, and is the 
mean of 13 runs at each job size. 

Runs were performed with two copies of testfaddperf, built with and without Aries-
specialized Remote Atomics enabled at compile time (they are enabled by default). 

Methodology for Figure 5 (Vector-Indexed-Strided (VIS) Shared-Memory Bypass) 

These results were gathered using the testvisperf VIS microbenchmark included in the 
GASNet-EX distribution, run on NERSC's Cori-II. An older version of the same 
microbenchmark was included in the last GASNet-1 release, and improvements made to the 
microbenchmark in this quarter were back-ported to the GASNet-1 version; the GASNet-1 
version used in these experiments is available in the GASNet-1 public BitBucket repository on 
the develop branch at git hash 87d8ab952 
         https://bitbucket.org/berkeleylab/gasnet/src/develop/tests/testvisperf.c 

Both versions of the test execute equivalent data movement operations; the only difference is 
the VIS call signatures have changed slightly in GASNet-EX. 

The exact command used for data collection in this figure was: 

srun -N 1 -n 2 -c 1 --cpu_bind=cores testvisperf -sl D 0.5 CE 

Where "CE" selects the Indexed Put and Strided Put tests, and D denotes the dimensionality 
for the strided metadata. All runs in this test used two processes on a single node, 
communicating through shared-memory bypass - using the Cray XPMEM variant of GASNet's 
PSHM support. 

https://bitbucket.org/berkeleylab/gasnet/src/develop/tests/testvisperf.c
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The selected parameters measure flood bandwidth performance for non-contiguous Puts 
using two of the three VIS interface metadata types: Indexed format (list of addresses with 
one fixed element size) and Strided format (N-dimensional array section descriptor).  

All operations included in the measurement used non-contiguous payloads residing in the 
GASNet-registered segment on each node. Total payload size per operation varied in powers 
of two from 16 bytes to 2MB. The data reported in this figure uses a fixed 8-byte element size 
(the size of the contiguously stored segments), where those elements were distributed 
uniformly and non-contiguously in linear memory at 25% density (i.e. a repeating pattern of 8 
bytes of payload followed by 24 bytes of skip). At each transfer configuration, a number of 
non-blocking operations were injected back-to-back and then synchronized, and the flood 
bandwidth computed as the quotient of the total payload volume and the elapsed time. The 
number of operations injected was dynamically scaled for each data point to achieve an 
elapsed time of at least 0.5 sec for each measurement. At each payload size, the operation 
specified in each series performs the same actual underlying payload data motion (only the 
metadata used to specify the transfer differs), thus providing more directly comparable 
results. In the case of the Strided operations, the metadata generator distributes the extent 
factors across dimensions, minimizing the use of null dimensions as permitted by the element 
count. 

The bandwidth for each transfer configuration was measured using two executables – one 
using the GASNet-1 implementation of VIS (with default settings) and the second using the VIS 
implementation of the current GASNet-EX release (with default settings). The figure shows the 
speedup ratio delivered at each transfer configuration by the GASNet-EX implementation, 
relative to the GASNet-1 implementation. 

Methodology for Figure 6 (Vector-Indexed-Strided (VIS) Negotiated-Payload AM) 

These results were gathered using the testvisperf VIS microbenchmark (see previous 
section), run on NERSC's Cori-II.  

The exact command used for data collection in this figure was: 

srun -N 2 -n 2 -c 1 --cpu_bind=cores testvisperf -sl 3 0.5 E 

Which selects a 3-dimensional Strided Put test. All runs are point-to-point, using a single 
process on each of two nodes connected by the network fabric. The selected parameters 
measure flood bandwidth performance for non-contiguous Strided Puts using a 3-dimensional 
array section descriptor.  

All operations included in the measurement used non-contiguous payloads residing in the 
GASNet-registered segment on each node. Total payload size per operation varied in powers-
of-two from 128 bytes to 2MB. The data reported in this figure uses a fixed 64-byte element 
size (the size of the contiguously stored segments), where those elements were distributed 
uniformly and non-contiguously in linear memory at 25% density (i.e. a repeating pattern of 
64 bytes of payload followed by 192 bytes of skip). At each transfer configuration, a number of 
non-blocking Strided operations were injected back-to-back and then synchronized, and the 
flood bandwidth computed as the quotient of the total payload volume and the elapsed time. 
The number of operations injected was dynamically scaled for each data point to achieve an 
elapsed time of at least 0.5 sec for each measurement. 
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The bandwidth for each transfer configuration was measured using three executables – one 
using the GASNet-1 implementation of VIS (with default settings), the second and third using 
the VIS implementation of the current GASNet-EX release, compiled to implement the 
operations being measured using either Fixed-Payload AMs or Negotiated-Payload AMs (the 
default setting). The figure shows the speedup ratio delivered at each transfer configuration 
by the GASNet-EX implementations, relative to the GASNet-1 implementation. 
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