
A New DMA Registration Strategy
for Pinning-Based High Performance Networks

Christian Bell Dan Bonachea
Computer Science Division

University of California, Berkeley
Berkeley, California, USA

E-mail:{csbell,bonachea }@cs.berkeley.edu

Keywords: Memory registration, Remote DMA, Global-Address
Space Languages, GASNet, Firehose, High-performance networks,
Myrinet.

Abstract

This paper proposes a new memory registration strategy for sup-
porting Remote DMA (RDMA) operations over pinning-based net-
works, as existing approaches are insufficient for efficiently imple-
menting Global Address Space (GAS) languages. Although existing
approaches often maximize bandwidth, they require levels of syn-
chronization that discourage one-sided communication, and can
have significant latency costs for small messages. The proposed
Firehose algorithm attempts to expose one-sided, zero-copy com-
munication as a common case, while minimizing the number of
host-level synchronizations required to support remote memory op-
erations. The basic idea is to reap the performance benefits of a
Pin-Everything approach in the common case (without the draw-
backs) and revert to a Rendezvous-based approach to handle the
uncommon case. In all cases, the algorithm attempts to amortize
the cost of synchronization and pinning over multiple remote mem-
ory operations, improving performance over Rendezvous by avoid-
ing many handshaking messages and the cost of re-pinning recently
used pages. Performance results are presented which demonstrate
that the cost of two-sided handshaking and memory registration is
negligible when the set of remotely referenced memory pages on a
given node is smaller than the physical memory (where the entire
working set can remain pinned), and for applications with larger
working sets the performance degrades gracefully and consistently
outperforms conventional approaches.

1. Introduction

Many high performance networks leverage user-level RDMA
as a means of achieving high bandwidth transfers. Research has
shown that it is beneficial to allow zero-copy RDMA operations to
be initiated from user-level, given that memory protection is suit-
ably implemented between the OS and the network interface. These
architectural trends, implemented by relatively low-cost, high per-
formance network interconnects [9, 24], have helped in bring-
ing traditional highly-integrated systems to the commodity mar-

ket. These systems typically support a version of the Message-
Passing Interface (MPI) [6] through their own low-level messag-
ing libraries, which offer limited (Myrinet) to extensive (Quadrics)
hardware support for remote memory operations. The emergence
of MPI as the primary parallel programming paradigm can be ex-
plained by the mutually profiting relationship it has established with
commodity network interconnects. Conversely, Global-Address
Space (GAS) languages (such as Titanium [29], UPC [14] [1] and
Co-Array Fortran [21]) have not traditionally received the same
level of attention across various high performance computing man-
ufacturers.

Among other things, GAS languages differ from traditional
message-passing interfaces by promoting the programmability of
shared-memory systems while still providing the performance and
control over data layout available through message-passing sys-
tems. While this model maps very naturally to tightly coupled
SMPs, the shared-memory model tends to expose design restric-
tions of some commodity networks – particularly in their use of
DMA operations on remote memory locations. In fact, some net-
works (hereafter “pinning-based” networks) require all memory
which is to be made accessible for remote DMA to be explicitly
locked (pinned) by the target host software before the transfer can
proceed. DMA registration, (or the combined cost of pinning and
unpinning DMA pages) can constitute a significant performance
bottleneck on networks such as Myrinet. GAS language applica-
tions tend to be more susceptible to these problems than those writ-
ten in a message-passing style, because a large fraction of the ap-
plication’s virtual memory space may potentially be accessed by
one-sided remote memory operations.

The following paper demonstrates a new memory registration
algorithm for pinning-based networks which is general enough to
satisfy the most demanding RDMA requirements, and compares it
against existing registration strategies for pinning-based NICs.

The Firehose algorithm is implemented using the GM
lightweight messaging interface on top of Myrinet [18], which is
currently the most popular pinning-based high performance net-
work used for building commodity HPC clusters. Additionally, this
work is part of an implementation of the GASNet interface [10], a
portable lightweight communication interface used for implement-
ing several SPMD GAS languages.

Section 2 provides background information about DMA regis-
tration. Section 3 explains the requirements of GAS languages,

presents the Firehose algorithm itself, and discusses how it com-
pares with existing DMA registration strategies. Section 4 provides
performance results for Firehose on synthetic benchmarks and real
applications. Section 5 discusses related work on DMA registra-
tion, and we conclude in Section 6.

2. Background

Network DMA interfaces can be divided into two broad cat-
egories based on their memory registration support, either auto-
matic hardware-assisted registration or passive pinning-based reg-
istration. With a hardware-assisted approach, the client software is
relieved from explicitly managing and pinning memory to be used
for DMA and NIC hardware is used to perform registration on-
demand.

The hardware-assisted approach is not unlike a regular paging-
based virtual memory system except that the NIC combines a
hardware TLB and tweaks in the kernel’s virtual memory subsys-
tem which allow the NIC to pin pages, initiate page faults when
necessary and track changes in the application’s page table (see
Quadrics [24]). Since this approach poses no restrictions on what
memory is made DMA-able, potentially all of the user’s virtual
memory can be made available to remote DMA operations. Remote
put/get operations may be initiated from anywhere in the user’s
virtual memory space and the network hardware guarantees deliv-
ery given that the source and destinations map to existing pages
in the application’s page table. Pushing the responsibility of en-
abling pages for DMA down to the network hardware comes at an
expected increase in hardware cost and complexity, but also leads
to significant software maintenance costs. On top of requiring plat-
form and OS-specific modifications, hardware-assisted approaches
must generally be continuously updated as changes are made to
internal Virtual Memory subsystems (which is likely to occur fre-
quently in open source OS’s). Nevertheless, in terms of perfor-
mance and scalability, the advantages of these networks usually
outweigh the disadvantages, which makes hardware-assisted regis-
tration the preferred approach for GAS language implementations.

The second general registration approach, pinning-based, re-
quires the programmer to explicitly set up the regions of memory
to be enabled for DMA operations. This translates into marking
the relevant memory pages as non-pageable (referred to onward
as pinned) in main memory. Pinning user-level virtual memory
pages instructs the OS that the underlying physical pages cannot
be swapped out until the application terminates or explicitly unpins
them. Due to this restriction, the upper bound on the amount of
memory that can be pinned at one time (and therefore made avail-
able for remote access) is limited by the size of physical memory
(in practice, the limit is actually somewhat less than physical mem-
ory size, depending on the OS and NIC hardware). This restriction
is especially problematic in 64-bit applications with large memory
requirements where the total virtual memory space in use may far
exceed the physical memory size (although the actual working set
may be rather small). Some NICs (such as Infiniband) may also
have limits on the number of separate regions of contiguous virtual
pages that can be simultaneously pinned.

Previous work with pinning-based DMA registration has in-
volved optimizing performance of remote memory operations us-
ing strategies adapted to the underlying network hardware. These

are formulated according to the method for posting communication
buffers, how regions of memory are enabled for DMA, flow con-
trol and low-level network layer overhead. It has been shown that
there is merit in considering various approaches to optimizing re-
mote memory operations on pinning-based networks. In particular,
[20] proposes two ways to deal with registration as a required com-
ponent for remote memory operations: either by pinning/unpinning
memory locations as part of each data transfer or by streaming data
through preallocated, registered memory buffers. Depending on
the underlying network parameters, one or the other is shown to
provide better bandwidth. This paper is concerned with an addi-
tional metric, the ability to provide entirely one-sided remote mem-
ory operations as a common case. GAS languages excel in their
ability to overlap communication with computation and other com-
munication through compiler analysis and fine-grained communi-
cation scheduling, however such optimizations are most effective
with communication systems that provide low-latency, one-sided
remote operations.

3. Firehose Algorithm

The proposed Firehose algorithm seeks to provide one-sided op-
erations as a common case to reap the benefits of faster response
time and to avoid interrupting remote host processors. The algo-
rithm also promotes zero-copy operations to lower CPU overhead
and allow overlap with computation and other communication. Al-
though the costs of DMA registration cannot be eliminated alto-
gether, Firehose attempts to amortize these costs over many opera-
tions while allowing one-sided operations as a common case. The
algorithm is presented through the next three subsections: require-
ments of GAS languages that motivated the need for Firehose, a
description of the algorithm itself, followed by a comparison with
other DMA registration approaches.

3.1. GAS Shared-Memory Requirements

The message-passing paradigm provides good performance for
parallel applications that can be cast into a bulk synchronous com-
munication pattern (mainly through the ubiquitous MPI), however
it lacks the programmability of shared-memory style programming.
GAS languages attempt to consolidate both approaches, both on
traditional highly-coupled systems and distributed systems such as
networks of workstations (clusters). The global shared memory ab-
straction provided by GAS languages makes it possible to program
parallel applications in a shared-memory style, regardless of how
the memory is organized in the underlying hardware, while still pro-
viding good performance and control over data placement. While
high-performance networks for commodity cluster computing have
been performing rather well in the realm of message-passing over
the years, many still do not have good support for implementing
globally-shared memory. The limiting factors are strongly related
to their support for low-latency, low-overhead one-sided remote
memory operations or in the amount of memory that can be made
available for remote operations.

GAS languages encourage the use of distributed data structures
– for example, UPC provides language-level support for shared ar-
rays striped across nodes. As this translates into providing shared

2

memory across disjoint physical memory spaces, local memory ref-
erences and computation are frequently interleaved with remote
memory references through the network interconnect. GAS lan-
guages also make it easy to express remote memory operations,
and consequently the performance of GAS language applications
tends to be sensitive to the latency and CPU overhead associated
with performing small (generally≤ 8 byte) remote memory oper-
ations. As a result, GAS language implementations are generally
carefully designed to support low-latency, low-overhead, small re-
mote memory operations, in addition to the traditional design goal
of providing high bandwidth for large message data transfers.

Using a communication system such as GASNet, language-level
remote memory references are translated into network communica-
tion events – typically one-sided gets and puts. Consequently, the
availability of truly one-sided remote memory operations is impor-
tant for the efficient implementation of GAS languages – specifi-
cally the ability to perform puts or gets on remote memory without
interrupting the remote host processor or waiting for it to explic-
itly poll the network. In [7], we extract the performance parame-
ters from several high-performance networks through microbench-
marks and evaluate the level of support for one-sided operations,
with the goal of using this information to guide communication
scheduling optimizations over these one-sided operations in GAS
language compilers.

GAS language applications are prone to use large data work-
ing sets, which has an important influence on the expected com-
munication and memory access patterns. For example, large dis-
tributed shared memories make it easier for programmers to use
unstructured distributed meshes (rather than structured ones) and
distributed sparse matrices (over dense ones) – algorithms over such
irregular data structures are generally more difficult to express us-
ing explicit message-passing communication. Although it would
be difficult to come up with a generalization relative to the size of
the working data sets of such algorithms, it can be maintained that
memory references (or memory access patterns) are prone to be di-
rected over a large portion of memory, possibly bounded only by
virtual memory. Since this paper is mainly concerned with making
it possible to efficiently support large amounts of shared memory
over clusters, the following points enumerate the important param-
eters in evaluating a memory registration strategy for implementing
GAS languages over pinning-based networks:

1. Memory usage and size of working set
Memory usage represents the total memory that is used
throughout the entire run of the application. If this value is
within reasonable limits of the amount of physical memory, it
may be reasonable to simply pin everything at startup. This
would enable one-sided DMA on every remote operation ini-
tiated from or to the pinned memory region. Conversely, the
size of the working set represents the data structures and any
other program code being actively accessed over some appro-
priate time period. The working set is likely to be limited
by the amount of physical memory (otherwise the application
would frequently be swapping), and this tendency can be ex-
ploited in designing an adaptive memory registration strategy.

2. Memory access pattern
The pattern of memory allocation and access on remote nodes
affects the way pinning behavior evolves within the applica-

tion memory space. GAS languages differ in allocation pat-
terns. For example, the current implementation of Titanium
has no specific allocation pattern, such that remote memory
accesses may appear scattered in virtual memory. Conversely,
UPC implementations generally manage remote DMA seg-
ments as heaps and follow a well-defined memory allocation
pattern: heaps grow monotonically upwards or downwards in
response to the application’s memory requirements [13]. (Ad-
ditionally, multithreaded UPC implementations divide a large
segment into smaller thread-specific memory heaps). This reg-
ularity can be exploited in designing a memory registration
strategy.

3. Cost of registration
Registration cost, specifically the time required to pin and un-
pin a memory page on the given network interconnect, can be
a significant performance factor. This paper defines registra-
tion cost as the combined cost of the system calls and NIC-
specific commands necessary to pin pages into memory and
subsequently unpin them. Techniques for lowering the over-
head of a single registration operation are generally system-
specific and beyond the scope of this paper – we instead focus
on strategies to reduce the frequency of these registration op-
erations.

4. Cost of synchronization messages
Some registration strategies require nodes to exchange syn-
chronization messages to accomplish registration (for exam-
ple, Rendezvous requires a round-trip of synchronization mes-
sages to register memory before the transfer begins, and some
final synchronization messages to deregister after the trans-
fer). The frequency and cost of these messages affect applica-
tion performance, both by consuming bandwidth and standing
in the critical path of remote accesses, thereby increasing re-
mote access latency. The latency of synchronization messages
which require a response may also be affected by the remote
host’s attentiveness to the network. An efficient registration
strategy should strive to reduce the number synchronization
messages necessary.

3.2. Algorithm Description

The Firehose algorithm starts by determining the largest amount
of application memory that can be registered. This constitutes the
upper bound on the total number of physical pages that can be si-
multaneously pinned and is generally a function of the size of phys-
ical memory. In order to prevent the application from swapping on
its memory references to non-shared memory and respect the mem-
ory requirements of other running processes and the kernel, this
value is limited to some reasonable (tunable) fraction of physical
memory.

If this amount corresponds to a total ofM bytes usingP byte
pages, then a total ofM/P pages can be pinned at any time during
execution. Since a node must support incoming remote memory
operations from any other node in a parallel job, the available space
can be evenly divided andF = b M

P∗(nodes−1)c physical pages can
be guaranteed to each remote node. A firehose is a conceptual han-
dle to a remote page and each node ownsF of these firehoses to
every other node. A node has total control over the fixed number of

3

firehoses it owns, and is free to use any or all of them to establish
mappings to remote pages (pinning those remote pages) in order to
satisfy pending remote memory operations.

Once a node has properly situated one of its firehoses, mapping
it to a region in remote virtual memory (via a round-trip synchro-
nization message), the remote node guarantees that virtual page will
remain pinned for the duration of the mapping. The requesting node
can now freely “pour” data through the hose to or from that region
of remote shared memory, in the form of one-sided remote DMA
puts and gets. A firehose can be efficiently reused for multiple sub-
sequent operations to the given region, exploiting the temporal and
spatial locality of application memory references to amortize setup
costs over many operations. As such, the Firehose algorithm is a
distributed strategy for managing pinned memory. Figure 1 por-
trays a typical runtime snapshot of how two nodes use their fire-
hoses to map selected remote pages on one node.

B Memory Space

Firehoses to B

...
..

..
...

Node A Node C

Firehoses to B

Node B

6

refcount = 0

refcount = 2
refcount = 1

refcount = 2

refcount = 1

refcount = 1
refcount = 2

refcount = 0

refcount = 0

1
2
3
4
5

7
8

7
8

refcount = 0
1

6
5
4
3
2

refcount = 1

Figure 1: Runtime snapshot of two nodes (A and C) mapping their fire-
hoses to another node (B)

Implementation of the Firehose algorithm requires a thin control
layer (such as Active Messages [27]) for the handshaking that takes
place when a host wishes to move a firehose1. The following steps
illustrate how a remote memory put operation can be completed
with Firehose:

1. The put operation consults a table of firehoses for existing
mappings to the remote node. If the destination memory is
fully mapped by firehoses (i.e. a firehose “hit”), the put can
be completed entirely with one-sided remote DMA; if not, the
second step follows.

2. A firehose move request is sent, which communicates a reas-
signment of firehoses. In general this involves moving of fire-
hoses (by updating state metadata) - releasing old mappings
which are not being used in favor of new ones.

1Active Messages are an integral part of the GASNet API, and the synchroniza-
tion messages in our Firehose implementation use the same AM-over-GM frame-
work discussed in section 4.1

3. Upon receiving a firehose move request, the virtual pages be-
ing released (if any) are unpinned and the new set of pages is
pinned. A reply confirming the pinned destination memory is
sent.

4. The one-sided DMA put operation may be sent.

The above series of events represents an unpolished version of
the algorithm. There are many potential optimizations and imple-
mentation details in dealing with firehoses, both on the requesting
and receiving node:

• Virtual pages may be grouped together into contiguous multi-
page “buckets” (with a size fixed at compile-time) which are
always managed together to effectively increase the page size
of the system and reduce the size of Firehose bookkeeping
data. The use of multi-page buckets may also help to limit the
number of separately pinned regions of pages, on networks
such as Infiniband where such regions may be a limited re-
source;

• Each node associates a reference count with every locally-
pinned bucket to track usage. While the reference count is
greater than zero, this bucket is not a candidate for unpin-
ning because it is currently in-use by one or more incom-
ing firehoses or locally-initiated operations. While the bucket
is pinned, subsequent remote requests to attach a firehose to
this bucket or locally-initiated operations needing this bucket
merely increment the reference count and incur no registra-
tion overhead (this situation is actually quite likely, especially
in collective operations such as broadcast or reduce). The lo-
cal node does not need to explicitly track which remote nodes
have mapped a firehose to a given local bucket, because all
incoming firehoses are entirely controlled by the remote node,
and therefore we rely on those nodes to cache their active map-
pings;

• Firehose supports lazy deregistration using the bucket-based
reference count. By allowing a configurable number of 0-
refcount buckets to remain pinned in memory, much of the
burden of unpinning and re-pinning is sidestepped. Although
this may lead to increased physical memory consumption,
it has the potential to greatly reduce pinning overhead as a
bucket lazily kept pinned may be the target for subsequent
firehose moves or local operations. Networks with a high reg-
istration cost should be configured permissively with the lazy
unpinning parameter;

• A victim FIFO queue tracks pinned buckets with zero refer-
ence counts. Victim buckets are evicted when firehose move
requests arrive for buckets not currently pinned or when we’ve
reached the configurable limit of physical pages in use for pin-
ning;

• A reference count is also tied to each firehose. The count is
incremented when an local operation is initiated through the
firehose and decremented once the operation completes. This
count prevents race conditions between concurrent or overlap-
ping operations that need to establish new firehose mappings.
Updating the count constitutes a fairly low level of overhead
and synchronization, which turns out to be practical for multi-
threaded implementations of Firehose.

4

Table 1 summarizes the data structures used to implement the
Firehose algorithm with all these optimizations.

Data
Structure

Description

Local
Bucket
Table

• Table keyed on bucket virtual address, with one
entry for each currently pinned bucket

• Each entry contains a bucket reference count and
pointers for the Bucket Victim FIFO (doubly-
linked list)

• Reference count reflects locally-initiated RDMA
operations in-progress for the pages of this bucket
(e.g. source of a locally-initiated put) and the num-
ber of remote firehoses mapped to the bucket

• Table can be implemented as a simple array on 32-
bit platforms

Firehose
Table

• Hash table keyed on tuple of remote node and
bucket virtual address with one entry per attached
firehose

• Each entry contains a reference count, a reverse
mapping to the tuple and a pointer for the Firehose
Victim FIFO (singly-linked list)

• Reference count reflects the number of locally-
initiated operations in-progress which touch this
remote bucket and are therefore using the firehose

Table 1: Primary data structures in Firehose implementation

In order to be adaptive to various networks and memory config-
urations, the Firehose algorithm has the following tunable parame-
ters:

1. Maximum amount of physical memory used for remote
firehoses (M)
This parameter limits the amount of memory the algorithm
guarantees to remote nodes as pinnable at application startup
(M). This amount of memory is consumed if and only if ev-
ery remote node uses up all of its firehoses to a given node. It
is likely that the upper bound for this value is limited by the
network or other operating system level requirements.

2. Maximum size of bucket victim FIFO queue (MAXVICTIM)
This parameter has been explained previously for its benefits
in minimizing the registration overhead for networks where
either the pin or unpin operations are expensive. When a local
bucket reference count reaches 0, it is added to the head of
the victim FIFO queue - when the queue length exceeds this
configurable parameter, buckets are removed from the tail of
the queue and unpinned.

3. Bucket size
Although Virtual Memory Managers use page size as the ba-
sic unit of virtual and physical memory, the Firehose algo-
rithm deals with memory in units of bucket size. Bucket size
is equal to page size by default but may be configured to be a
multiple of page size to adapt to other requirements (for exam-
ple to reduce the size of the Firehose bookeeping data). Note
that allowing buckets to span more than a single page may
present new challenges since bucket registration requests may

cross page boundaries into unmapped virtual space (causing
segmentation faults) - some memory allocator support may be
required to allow multi-page buckets.

In our implementation, bucket size is set at system compile time,
and M and MAXVICTIM are set at runtime by the user (or more
likely the person installing/tuning GASNet for a particular site).
The total physical memory usage of Firehose (i.e. pinned mem-
ory managed by the algorithm) never exceeds the upper bound of
M+MAXVICTIM (so the sum should be restricted to be some rea-
sonable fraction of the physical memory size).M is the maximum
amount of memory that can be pinned at any time as a result of re-
mote firehose requests, and the victim FIFO can additionally keep
up to MAXVICTIM pages which aren’t committed to a remote fire-
hose (to reduce the cost of repinning them later, benefitting from
temporal locality). Local pin operations (i.e. source of a put or
destination of a get for pages not already pinned) can be satisfied
by stealing some pages off the victim FIFO (or simply pinning new
pages and later returning them to the victim FIFO if it’s below the
length limit). In any case, the local node is guaranteed at least
MAXVICTIM space for local pin operations to unpinned pages, and
the algorithm will still never exceed theM+MAXVICTIM hard limit
(although it’s expected to rarely reach this limit in practice).

A future work item is to make the victim FIFO length limit adap-
tive – i.e. allow the victim FIFO to grow beyondMAXVICTIM (per-
haps up to some higher upper limit) provided the total amount of
pinned memory is still below theM+MAXVICTIM hard limit. This
optimizes for the case when the page demands of remote nodes are
unbalanced – it allows us to keep extra pages in the victim FIFO
to optimize the performance of the remote nodes who are targeting
this node heavily, essentially allowing them to “borrow” some of
the physical pages which were statically allocated to other remote
nodes that are not using all their firehose connections to this node.
This also helps to ameliorate potential scalability problems in the
static allocation of firehose resources by reducing the performance
penalty in an unbalanced communication pattern when a remote
node has insufficient firehoses to cover its working set (most of the
unpin-repin costs can still be avoided).

3.3. Firehose and Existing Pinning-based DMA strategies

Although hardware-assisted memory registration eases the port-
ing task for GAS languages, most existing high performance NICs
are not equipped with the sophisticated memory interface hardware
required to make this approach work. Table 2 provides a sum-
mary of current DMA registration strategies, separating hardware-
assisted from software-based approaches. Their advantages and
disadvantages are explained below.

Of the pinning-based DMA strategies listed in the table, the Pin
Everything approach is different since pinning is not done on de-
mand – a single segment of memory is pinned at startup (or equiv-
alently, pages are pinned as they are first used by the memory al-
locator and kept pinned for the life of the program). If total mem-
ory requirements are known to be constrained to a reasonable size
within the physical memory limits of the host, it might be preferable
to preemptively pin the entire remotely-accessible region of mem-
ory at startup in this manner. In this case, every DMA operation
falling within the segment can complete as one-sided since it does
not require additional synchronization between hosts to complete.

5

Strategy Advantages Disadvantages

Hardware-assisted
Zero-copy, One-sided, Full memory space accessible,
No handshaking or bookkeeping in software

Hardware complexity and price, Kernel modifications

Pin Everything Zero-copy, One-sided (no handshaking)
Limited memory, May require a custom memory allo-
cator

Bounce Buffers
No registration cost at runtime, Full memory space ac-
cessible

Two-sided, Local copy costs (CPU consumption),
Messaging overhead (metadata and handshaking pro-
tocol)

Rendezvous
Zero-copy, Full memory space accessible, Only hand-
shaking is synchronous

Two-sided, Registration paid on every operation

Firehose
Zero-copy, One-sided (common case), Full memory
space accessible, Only handshaking is synchronous,
Registration costs amortized

Messaging overhead (metadata and handshaking pro-
tocol) on firehose miss (uncommon case)

Table 2: Summary of available DMA registration strategies

Once the memory region is pinned, it is used without interruption
(pinning/unpinning) throughout the entire run of the application.
Otherwise unusable with larger memory requirements, systems us-
ing the Pin Everything approach will typically provide a special
memory allocator that manages the pool of pinned pages and re-
quires applications to allocate all remotely-accessible memory us-
ing this allocator. This approach may still incur some on-demand
registration costs for pinning local memory if the client is permit-
ted to initiate operations to/from local memory areas outside the
pre-pinned segment (or alternately, bounce buffers could be used
for local memory, as described below).

For systems with larger memory requirements, some level of
synchronization is required between hosts in order to permit remote
access on demand.

The Bounce Buffer approach uses temporary buffers residing in
pinned memory to hold data for outgoing or incoming DMA oper-
ations. These buffers are posted based on criteria such as message
sizes or fair sharing of buffers between nodes. Once a DMA opera-
tion completes in the case of a put, the target processor is informed
of its delivery and must copy the data to the final remote destination.
Similarly, when a get request is received, the targeted node copies
the data into a bounce buffer and effectively executes a put opera-
tion to the requesting node. The main advantage of using bounce
buffers lies in the cost of registration being paid only at startup –
once the bounce buffers are pinned, no additional memory regions
need to be pinned and all the user’s virtual memory space is effec-
tively accessible for puts/gets. The primary disadvantage is that the
Bounce Buffer approach is strictly two-sided, and consequently the
latency for remote operations is likely to suffer. Additionally, copy-
ing costs may be significant (even for small messages) since they
interrupt remote host processors and dirty CPU caches and TLB’s,
and the CPU overhead for local copying restricts the potential for
computational overlap (especially with large messages). Moreover,
the task of managing the bounce buffers while still providing good
communication concurrency and scalability can introduce signif-
icant complexity and handshaking overheads, depending on the
level of hardware support. Finally, the approach remains question-
able in the presence of highly-tuned communication systems where
a wide range of non-blocking operations and fully-threaded client
configurations increase concurrency of communication. There is a
scalability problem when the number or size of network operations
does not match the anticipated load, as bounce buffer efficiency re-
lies on the rate at which buffers are posted relative to the rate of

incoming operations.
For large messages, the cost of pinning on demand using a Ren-

dezvous protocol can be amortized over more data and provide a
net performance improvement over the use of many bounce buffers.
Rendezvous protocols are carried out in two steps. The first sends
a message to the remote node indicating the region to be pinned
for DMA access. For puts, the remote node processes the message
and pins the relevant memory region, then sends a reply to indi-
cate the DMA operation can be initiated. A similar approach may
be taken for gets, although as an optimization the reply may coa-
lesce acknowledgment and payload (if permitted by the underlying
network hardware). Optionally, there may be some final handshak-
ing to unpin the relevant regions once the DMA transfer is com-
plete. Even though both hosts must initially be synchronized, Ren-
dezvous only requires the handshaking phase to be synchronous
(and not the entire data transfer). Once the local and remote pages
are pinned, or known to be pinned, the requesting node is free to
initiate any DMA operation without interrupting the host proces-
sor. However, the cost of registration is paid on every operation,
which is prohibitively costly for small messages and debatable for
larger messages. Nieplocha et al. [20] show that the message size
crossover point for achieving optimal bandwidth (using Bounce
Buffers for small messages and Rendezvous for large messages)
is greatly dependent on the underlying network hardware and soft-
ware. On Myrinet/GM, the cost of unpinning constitutes a very
large portion of the total registration cost. For this reason, most
existing Myrinet/GM communication layers use Rendezvous and
omit the unpin step (e.g. MPICH-GM [4]) or simply discard Ren-
dezvous altogether in favor of two-sided pipelined Bounce Buffers
[19]. Fortunately, registration cost is network dependent – previous
work [20] has shown that other networks such as Giganet/Emulex
cLAN offer more competitive memory registration performance, al-
though the cost is still significant.

4. Results

In order to demonstrate the Firehose algorithm, we’ve developed
an initial implementation and measured its performance on two ap-
plication benchmarks and a synthetic microbenchmark written in
Titanium. These were run on the LBNL Alvarez cluster, which
consists of 2-way PIII-866Mhz nodes with 1GB of RAM and Myri-
com’s Myrinet 2000 PCI-C network interface cards.

Titanium[15] is a Global-Address Space language and an ideal

6

client for the Firehose algorithm. Titanium is an explicitly paral-
lel SPMD dialect of Java developed at UC Berkeley[5] to support
high-performance scientific computing on large-scale multiproces-
sors, including massively parallel supercomputers and distributed-
memory clusters with one or more processors per node. In Tita-
nium, all data has a user-controllable processor affinity, but parallel
processes may directly reference each other’s memory to read and
write values or arrange for bulk data transfers.

Titanium’s distributed memory backends can utilize a wide va-
riety of high-performance network interconnects, including Ac-
tive Messages-2 [17], MPI, IBM LAPI, Cray shmem, and Ether-
net/UDP. We’ve recently added support for using our GASNet [10]
implementation (which uses the Firehose algorithm on Myrinet net-
works) as the communication system.

4.1. Platform description: GASNet and GM

GASNet provides a two-tier interface: a core and extended API.
The core is based on the Active Messages [27] paradigm and is gen-
eral enough to also implement the extended API. The extended API
provides higher-level operations such as blocking and non-blocking
puts and gets (with a rich set of synchronization options) and bar-
riers. GASNet can quickly be implemented on a new network plat-
form simply by implementing the core API and using a default ref-
erence implementation of the extended API written in terms of the
core. Although this port is sufficient, it is often sub-optimal: im-
plementors are encouraged to directly implement selected opera-
tions in the extended API to take advantage of any hardware sup-
port or special features provided by the given network (for exam-
ple, remote DMA or hardware-assisted barrier). In any case, the
GASNet interface is flexible, expressive and capable of efficiently
implementing medium and high-level operations for many remote
memory and collective operations. Figure 2 shows how the two-
tier interface offers a portable, high-performance interface to the
compiler over various network hardware.

Compiler−generated code

Compiler−specific runtime system

GASNet Extended API

Network Hardware

GASNet Core API

Figure 2: GASNet communications system layered approach: parts of the
GASNet core may be bypassed to offer optimized hardware op-
erations.

When GASNet is ported to a network such as Myrinet, the
lowest-level communication layer available is generally used to im-
plement the GASNetconduitfor that network (GASNet offers con-
duit implementations for many high-performance networks – code
is available online [2] and includes our implementation of the Fire-
hose algorithm in the GM conduit). GM is a Myrinet low-level
message-passing system that includes a driver, a control program

for the Myrinet interface, a network mapper and the GM API (li-
brary and header files)2. GM provides protected user-level access
to the NIC; reliable, ordered delivery of messages; recovery from
transient network problems; scalability to thousands of nodes and a
low CPU utilization on Myrinet hosts [18].

4.2. Testing Methodology

Empirical results were collected to compare the performance of
the Firehose algorithm and two flavors of the Rendezvous algo-
rithm: with-unpin and no-unpinof remote pages. Upon sending
a put, the Rendezvous algorithm pins the source memory (if nec-
essary) and sends an Active Message to the remote node indicat-
ing the destination memory to be pinned. Once the put is com-
plete, the Rendezvouswith-unpinstrategy sends an additional Ac-
tive Message to unpin the remote pages. Although the Rendezvous
no-unpinapproach is used by some Myrinet communication lay-
ers [4], it permits clients to request pinned memory until they’ve
exhausted physical memory. Omitting the unpin step does not con-
stitute a viable approach for GAS languages, but serves as a good
metric when comparing to Firehose. In fact, we show that Firehose
consistently outperforms Rendezvous, even without unpin, when
the working set memory size is within Firehose’sM parameter. It
should also be noted that our Rendezvous implementation benefits
from the highly tuned non-blocking primitives available in GASNet
and is also augmented with caching of local pinned pages to avoid
unpin-repin costs for local pages (a significant performance gain
when issuing many successive Rendezvous puts from overlapping
memory locations).

For the following tests, Firehose assumesM = 400MB of
pinnable memory andMAXVICTIM = 50MB, which means each
node ownsb 400MB

4096∗(nodes−1)c = b 102400
(nodes−1)c firehoses to each re-

mote node, and the limit on total pinned memory isM+MAXVICTIM

= 450MB. The tests are run long enough for Firehose to reach a
steady state. The bucket size is set to single-page buckets to provide
an upper bound on the overhead in managing Firehose metadata.

4.3. Application Benchmarks

Firehose was benchmarked using two parallel applications im-
plemented in Titanium: Cannon’s Matrix Multiplication and a
Bitonic Sort. In Cannon’s algorithm [11], nodes are laid out on
a N × N mesh and multiplication results are optimized to be ac-
cumulated locally. If results are accumulated on remote nodes, put
operations are used (the results below use 4 nodes). The bitonic
sort algorithm dividesN integers equally among 8 nodes and runs
a parallel quick sort. Results are then merged using a compare and
exchange algorithm.

Application results are presented in Table 3. Because of the rela-
tively small working set, Firehose never needed to detach firehoses
or unpin pages in the firehose move operation, it merely attached
new firehoses that were free. In the Firehose results shown, fire-
hose moves constitute less than one percent of all puts, and vary
in performance for both applications. Since Cannon makes heav-
ier use of firehose moves (almost 6 times more than Bitonic sort),

2With the anticipated release of GM 2.0, GASNet/GM will also support one-
sided gets through the Firehose algorithm.

7

Application Total Puts Pinning Strategy Total Runtime Type of put Number of puts (%) Avg. Put Latency
Cannon Matrix 1 500 000 Rendezvouswith unpin 5460.00s pin-put-unpin 1 500 000 (100%) 5141 us
Multiply Rendezvousno-unpin 797.45s pin-put 1 500 000 (100%) 34 us

Firehose 780.81s move firehose 2 934 (0.2%) 46 us
one-sided 1 497 066 (99.8%) 14 us

Bitonic Sort 2 125 000 Rendezvouswith unpin 4740.05s pin-put-unpin 2 125 000 (100%) 522 us
Rendezvousno-unpin 289.45s pin-put 2 125 000 (100%) 33 us
Firehose 255.25s move firehose 518 (0.02%) 54 us

one-sided 2 124 482 (99.98%) 15 us

Table 3: Application performance with the Firehose and Rendezvous strategies

firehose moves are more likely to target a previously pinned mem-
ory location. This is shown in the difference in average firehose
move times (46 usvs 54 us) – a move request satisfied by attach-
ing firehoses to buckets in the FIFO queue is completed within 5us
while an actual pin operation delays the request by 40 us. Results
obtained show that reuse of buckets in the FIFO queue is benefi-
cial as the average move time as part of the remote firehose handler
for both applications is respectively 5us and 14us (significantly less
than the average pin time of 40us). On the requesting node, the total
overhead for building the firehose list, updating the firehose table
and other bookkeeping tasks consumes less than a microsecond.
The remaining time is shared between the messaging overhead for
the Active Message and other GM/GASNet overheads. While the
request/reply tends to be in the 20us range, this result varies with
node attentiveness to the network.

Results show the average put latency under Firehose is twice as
good as the Rendezvousno-unpinapproach, and several orders of
magnitude better than the Rendezvouswith-unpinapproach. More-
over, both applications show that the common case of using one-
sided puts over firehose moves is achieved nearly 100% of the time,
and both applications show a noticeable improvement in total run-
ning time when using Firehose (applications which are less latency
tolerant or more bandwidth sensitive should show an even greater
improvement).

4.4. Synthetic Microbenchmarks

We’ve developed a synthetic benchmark which measures the
Firehose and Rendezvous approaches to compare the achieveable
bandwidth and start-to-finish latency for single operations.

• Small-message latency. Using 8-byte puts between two
nodes, the latency performance of Firehose under various
working set memory sizes is shown by scattering puts in a uni-
form random pattern over increasing remote memory spaces.
The put operations initiated on each node are sourced from
a random memory location within an area of memory of size
MAXVICTIM in order to better correlate increasing destination
memory space on firehose movement. Figure 3 shows how
Firehose consistently outperforms the best Rendezvous solu-
tion by 30 us when the remote access working set size does
not exceedM+MAXVICTIM (with-unpin is not shown since
its numbers are steadily in the 6ms range, which is over 100
times slower). The dramatic reduction in put latency is a direct
consequence of Firehose’s ability to remove extraneous mes-
sages from the critical path in the common case of a firehose
hit, and use entirely one-sided DMA. Past theM+MAXVICTIM

point (450 MB), the Firehose latency increases sharply, pass-
ing Rendezvousno-unpinonce 3% of the 8-byte puts require
unpinning, and approaching the Rendezvouswith-unpinper-
formance (not shown) – the high 6ms penalty for each un-
pin operation quickly dominates all other factors. It should be
noted that for working sets larger thanM+MAXVICTIM , the
Rendezvousno-unpinalgorithm is “cheating” in that it has
more thanM+MAXVICTIM pages (450MB) simultaneously
pinned (because it never unpins any remote or local pages) and
if M+MAXVICTIM constitutes a hard limit on pinnable phys-
ical pages, Rendezvousno-unpinwould have crashed before
reaching this point. Under implementations where the unpin
operation is less expensive, we expect Firehose to display bet-
ter performance characteristics past theM+MAXVICTIM point.
Additionally, the hit rate and performance should be even bet-
ter under a more realistic access pattern that exhibits better
spatial and temporal locality within the working set than uni-
form random distribution.

Rendezvous (no unpin)

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450 500

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Working Set Memory Size (MB)

M=400MB

Firehose

 0

Figure 3: 8-byte put latency over increasing working set memory size
(M = 400MB)

• Large-message bandwidth. Figure 4 shows results from a
test where put operations of 64 KB are sent from one node
to another, covering an increasing memory space in a uniform
random distribution of targets. For working sets smaller than
M, Firehose effectively provides a 100% hit rate and all puts
proceed at full DMA bandwidth with no handshaking over-
heads – this corresponds to the case where the working set of
remotely referenced pages fits within pinnable physical mem-
ory, and we expect this to be the common case for real scien-
tific applications (note the actual value ofM is a tunable Fire-

8

hose parameter whose optimal value is site-dependent). When
the working set exceedsM, the Firehose hit rate decreases (in-
creasing the amount of handshaking required to handle misses)
and performance degrades gracefully, eventually approaching
the performance of Rendezvouswith-unpinat very large work-
ing set sizes (at which point the application is probably swap-
ping to disk to accomodate the working set which exceeds
physical memory). Unpin operations are relatively less expen-
sive in the large message test since the latency to complete a
one-sided 64 KB put is much higher in comparison to an 8 byte
put. Rendezvousno-unpinis shown for comparison purposes,
however it should again be noted that beyondM+MAXVICTIM

(450MB) the Rendezvousno-unpinalgorithm has exceeded
the limit on pinnable physical pages (and therefore is not re-
ally a viable solution at that point).

• Peak bandwidth. Peak bandwidth for a range of put sizes
is reported in Figure 5 for both algorithms. This test uses
repeated puts to/from the same location, so Firehose effec-
tively provides a 100% one-sided hit rate. Firehose beats Ren-
dezvousno-unpinby a noticeable margin because it requires
no handshaking messages before performing a DMA. Ren-
dezvouswith-unpinconsistently performs dismally due to the
high cost of unpinning on Myrinet which must be paid on ev-
ery operation.

Rendezvous (with unpin)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700

B
an

dw
id

th
 (

M
B

/s
)

Working Set Memory Size (MB)

M=400MB

Firehose
Rendezvous (no unpin)

 0

Figure 4: 64KB put bandwidth over increasing working set memory size
(M = 400MB)

5. Related Work

User-level networking has provided many benefits by removing
the operating system and intermediate buffering from the critical
path. Its viability has been demonstrated through the implemen-
tation of user-level networking libraries on commodity networks,
such as U-Net[26], FM[22], BIP[23] and fbufs[12]. In some cases,
a suggested coupling of the network interface with the processor’s
TLB (as in Stanford FLASH[16]), or the integration of a TLB di-
rectly on the interface [28] have proven useful in maximizing re-
motely addressible user memory. These approaches are impor-
tant in that they do not require the programmer to be directly in-
volved in managing DMA-enabled user memory. SHRIMP’s Vir-
tual Memory-Mapped Communication system [8] allowed users to

Rendezvous (with unpin)

 50

 100

 150

 200

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Kbytes)

Firehose
Rendezvous (no unpin)

 0

Figure 5: Peak Bandwith for Rendezvous and Firehose

export pinned pages to remote nodes which then mapped them into
the page table, and provided hardware support for translating CPU
store operations into RDMA puts. It is widely accepted that reg-
istration costs on pinning-based networks constitute an important
bottleneck. As a part of the PM communications library, registra-
tion is addressed using aPin-down Cache[25], where mappings of
locally pinned pages are cached on a LRU basis. Although this
constitutes an improvement over blindly pinning and unpinning for
every remote memory operation, each of these operations require a
previous network roundtrip such that both source and destinations
are pinned.

6. Conclusion

The Firehose algorithm presented in this paper is motivated by
the inadequacy of current pinning-based networks to support re-
mote memory operations which access large portions of globally-
shared memory. Efficient implementation of GAS languages re-
quires communication systems capable of providing low-overhead
and low-latency for small, non-blocking remote puts/gets and high-
bandwidth, zero-copy transfers for large puts/gets. On networks
such as Myrinet/GM, these goals are best achieved through the use
of fully one-sided RDMA operations, but the need to perform ex-
plicit DMA registration on the remote host (without compromis-
ing the host’s physical memory resources by simply pinning ev-
erything at startup, or forfeiting the performance benefits of truly
one-sided communication by imposing handshaking and synchro-
nization) poses an interesting algorithmic challenge.

The Firehose algorithm presented successfully exposes one-
sided, zero-copy communication as a common case, while mini-
mizing the number of host-level synchronizations required to sup-
port remote memory operations, and amortizes the cost of syn-
chronization and pinning over multiple remote memory operations.
Firehose reaps the performance benefits of a Pin-Everything ap-
proach in the common case (without the drawbacks) and reverts to
Rendezvous-like behavior to handle the uncommon case. Empiri-
cal results with synthetic and application benchmarks demonstrate
that the cost of handshaking and memory registration in Firehose
is negligible when the set of remotely referenced memory pages on
a given node is smaller than the physical memory, and in applica-
tions with larger working sets the performance degrades gracefully

9

and consistently outperforms conventional approaches. We believe
the Firehose algorithm is a near-ideal solution to the DMA registra-
tion problem presented by pinning-based networks such as Myrinet
for GAS language implementations, and furthermore Firehose is
sufficiently general that it should prove to be a useful strategy for
implementing other communication systems with related goals on
similar networks.

7. Future Work

Future work includes evaluating the performance of Firehose
with get operations, once Myrinet releases the eagerly anticipated
version of GM which will support one-sided DMA gets. Every-
thing in the Firehose algorithm and implementation generalizes nat-
urally to gets, once the underlying transport provides that capability
(in the meantime, gets are implemented using an Active Message
which initiates a Firehose put back to the requestor).

We are also interested in implementing the Firehose algorithm
on other pinning-based high-performance networks with DMA ca-
pabilities – Infiniband [3] is one such potential target.

8. Acknowledgements

This work was supported in part by the Department of En-
ergy under DE-FC03-01ER25509 and DE-AC03-76SF00098, by
the National Science Foundation under ACI-9619020 and EIA-
9802069, and by the Department of Defense. The information pre-
sented here does not necessarily reflect the position or the policy
of the U.S. Government and no official endorsement should be in-
ferred. We’d also like to thank Boon Thau Loo for providing the Ti-
tanium application code, and Kathy Yelick, Jarek Nieplocha, Paul
Hargrove, and Myricom for their support and constructive sugges-
tions.

References

[1] Berkeley UPC project home page. http://upc.lbl.gov.
[2] GASNet home page. http://www.cs.berkeley.edu/˜bonachea/gasnet.
[3] Infiniband trade association home page. http://www.infinibandta.org.
[4] MPICH-GM implementation, v1.2.1..7b. http://www.myrinet.com.
[5] Titanium home page. http://titanium.cs.berkeley.edu.
[6] MPI: A message-passing interface standard. Technical Report UT-

CS-94-230, 1994.
[7] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands,

C. Iancu, M. Welcome, and K. Yelick. An evaluation of current high-
performance networks. InIPDPS 2003, 2003. http://upc.lbl.gov.

[8] M. A. Blumrich, R. D. Albert, Y. Chen, D. W. Clark, S. N. Dami-
anakis, C. Dubnicki, E. W. Felten, L. Iftode, K. Li, M. Martonosi,
and R. A. Shillner. Design choices in the SHRIMP system: An em-
pirical study. InProc. of the 25th Annual Int’l Symp. on Computer
Architecture (ISCA’98), 1998.

[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second local
area network.IEEE Micro, 15(1):29–36, 1995.

[10] D. Bonachea. GASNet specification, v1.1. Tech Report UCB/CSD-
02-1207, U.C. Berkeley, October 2002.

[11] L. E. Cannon. A cellular computer to implement the kalman filter
algorithm, 1969.

[12] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. InSymposium on Operating Systems Prin-
ciples, pages 189–202, 1993.

[13] J. Duell. Memory management in the UPC runtime, 2002. http:
//upc.lbl.gov.

[14] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC specifica-
tion, v1.0, February 2001. http://upc.gwu.edu.

[15] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike,
and K. Yelick. Titanium language reference manual. Tech Report
UCB/CSD-01-1163, U.C. Berkeley, November 2001.

[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-
sor. InProceedings of the 21st Annual International Symposium on
Computer Architecture (ISCA), 1994.

[17] A. Mainwaring and D. Culler. Active message applications program-
ming interface and communication subsystem organization. Tech
Report UCB/CSD-96-918, U.C. Berkeley, 1995.

[18] Myricom. The GM Message Passing System. Myricom, Inc, GM
v1.5 edition, July 2002.

[19] J. Nieplocha and B. Carpenter. ARMCI: A portable remote mem-
ory copy library for distributed array libraries and compiler run-time
systems. InProc. RTSPP IPPS/SDP’99, 1999.

[20] J. Nieplocha, V. Tipparaju, and D. Panda. Protocols and strategies for
optimizing performance of remote memory operations on clusters.
In Workshop Communication Architecture for Clusters (CAC02) of
IPDPS’02, Ft Lauderdale, FL, 2002.

[21] R. Numrich and J. Reid. Co-array fortran for parallel programming.
In ACM Fortran Forum 17, 2, 1-31., 1998.

[22] S. Pakin, M. Lauria, and A. Chien. High performance messaging on
workstations: Illinois Fast Messages (FM) for Myrinet. 1995.

[23] L. Prylli and B. Tourancheau. Bip messages user manual, 1997.
[24] Quadrics Supercomputing.Quadrics QSNet Interconnect, 2002.

http://www.quadrics.com.
[25] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache:

A virtual memory management technique for zero-copy communi-
cation. In12th Int. Parallel Processing Symposium, pages 308–315,
1998.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-
level network interface for parallel and distributed computing. In
15th ACM Symposium on Operating Systems Principles, pages 40–
53, 1995.

[27] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communication and
computation. InProceedings of the 19th International Symposium
on Computer Architecture, pages 256–266, Gold Coast, Australia,
May 1992.

[28] M. Welsh, A. Basu, and T. von Eicken. Incorporating memory man-
agement into user-level network interfaces. Technical Report TR97-
1620, 13, 1997.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. InACM 1998 Workshop
on Java for High-Performance Network Computing, 1998.

10

