A New DMA Registration Strategy
for Pinning-Based High Performance Networks

Christian Bell Dan Bonachea
Computer Science Division
University of California, Berkeley
Berkeley, California, USA

E-mail: {csbell,bonachea }@cs.berkeley.edu

Keywords: Memory registration, Remote DMA, Global-Address ket. These systems typically support a version of the Message-
Space Languages, GASNet, Firehose, High-performance networksPassing Interface (MPI) [6] through their own low-level messag-
Myrinet. ing libraries, which offer limited (Myrinet) to extensive (Quadrics)

hardware support for remote memory operations. The emergence
Abstract of MPI as the primary parallel programming paradigm can be ex-
plained by the mutually profiting relationship it has established with

This paper proposes a new memory registration strategy for sup-commodity network interconnects. Conversely, Global-Address
porting Remote DMA (RDMA) operations over pinning-based net- Space (GAS) languages (such as Titanium [29], UPC [14] [1] and
works, as existing approaches are insufficient for efficiently imple- Co-Array Fortran [21]) have not traditionally received the same
menting Global Address Space (GAS) languages. Although existinggvel of attention across various high performance computing man-
approaches often maximize bandwidth, they require levels of synufacturers.
chronization that discourage one-sided communication, and can Among other things, GAS languages differ from traditional
have significant latency costs for small messages. The proposeghessage-passing interfaces by promoting the programmability of
Firehose algorithm attempts to expose one-sided, zero-copy comshared-memory systems while still providing the performance and
munication as a common case, while minimizing the number ofcontrol over data layout available through message-passing sys-
host-level synchronizations required to support remote memory optems. While this model maps very naturally to tightly coupled
erations. The basic idea is to reap the performance benefits of aSMPs, the shared-memory model tends to expose design restric-
Pin-Everything approach in the common case (without the draw-tions of some commodity networks — particularly in their use of
backs) and revert to a Rendezvous-based approach to handle thBMA operations on remote memory locations. In fact, some net-
uncommon case. In all cases, the algorithm attempts to amortizevorks (hereafter “pinning-based” networks) require all memory
the cost of synchronization and pinning over multiple remote mem-which is to be made accessible for remote DMA to be explicitly
ory operations, improving performance over Rendezvous by avoidiocked (pinned) by the target host software before the transfer can
ing many handshaking messages and the cost of re-pinning recentlgroceed. DMA registration, (or the combined cost of pinning and
used pages. Performance results are presented which demonstraignpinning DMA pages) can constitute a significant performance
that the cost of two-sided handshaking and memory registration ishottleneck on networks such as Myrinet. GAS language applica-
negligible when the set of remotely referenced memory pages on &ons tend to be more susceptible to these problems than those writ-
given node is smaller than the physical memory (where the entireten in a message-passing style, because a large fraction of the ap:
working set can remain pinned), and for applications with larger plication’s virtual memory space may potentially be accessed by
working sets the performance degrades gracefully and consistentlyyne-sided remote memory operations.
outperforms conventional approaches. The following paper demonstrates a new memory registration

algorithm for pinning-based networks which is general enough to
satisfy the most demanding RDMA requirements, and compares it
1. Introduction against existing registration strategies for pinning-based NICs.
The Firehose algorithm is implemented using the GM

Many high performance networks leverage user-level RDMA lightweight messaging interface on top of Myrinet [18], which is
as a means of achieving high bandwidth transfers. Research hagurrently the most popular pinning-based high performance net-
shown that it is beneficial to allow zero-copy RDMA operations to Work used for building commodity HPC clusters. Additionally, this
be initiated from user-level, given that memory protection is suit- Work is part of an implementation of the GASNet interface [10], a
ably implemented between the OS and the network interface. Thesgortable lightweight communication interface used for implement-
architectural trends, implemented by relatively low-cost, high per- ing several SPMD GAS languages.
formance network interconnects [9, 24], have helped in bring- Section 2 provides background information about DMA regis-
ing traditional highly-integrated systems to the commodity mar- tration. Section 3 explains the requirements of GAS languages,

presents the Firehose algorithm itself, and discusses how it comare formulated according to the method for posting communication
pares with existing DMA registration strategies. Section 4 providesbuffers, how regions of memory are enabled for DMA, flow con-
performance results for Firehose on synthetic benchmarks and reatol and low-level network layer overhead. It has been shown that
applications. Section 5 discusses related work on DMA registra-there is merit in considering various approaches to optimizing re-
tion, and we conclude in Section 6. mote memory operations on pinning-based networks. In particular,
[20] proposes two ways to deal with registration as a required com-
ponent for remote memory operations: either by pinning/unpinning
memory locations as part of each data transfer or by streaming data
. . _ through preallocated, registered memory buffers. Depending on
Network DMA interfaces can be divided into two broad cat- y,q underlying network parameters, one or the other is shown to

egories based on their memory registration support, either autoyq ige better bandwidth. This paper is concerned with an addi-

matic hardware-assisted registration or passive pinning-based regjoa| metric, the ability to provide entirely one-sided remote mem-
istration. With a hardware-assisted approach, the client software i%ry operations as a common case. GAS languages excel in their
relieved from explicitly managing and pinning memory to be used ,pijity 10 overlap communication with computation and other com-
for DMA and NIC hardware is used to perform registration on- munication through compiler analysis and fine-grained communi-
demand. cation scheduling, however such optimizations are most effective

The hardware-assisted approach is not unlike a regular paginggith communication systems that provide low-latency, one-sided
based virtual memory system except that the NIC combines & ote operations.

hardware TLB and tweaks in the kernel's virtual memory subsys-

tem which allow the NIC to pin pages, initiate page faults when

necessary and track changes in the application’s page table (se8. Firehose Algorithm
Quadrics [24]). Since this approach poses no restrictions on what

memory is made DMA-able, potentially all of the users virtual 1ne proposed Firehose algorithm seeks to provide one-sided op-
memory can be made available to remote DMA operations. Remot&yations as a common case to reap the benefits of faster respons
put/get operations may be initiated from anywhere in the user'sime and to avoid interrupting remote host processors. The algo-
virtual memory space and the network hardware guarantees delivVziihm also promotes zero-copy operations to lower CPU overhead
ery given that the source and destinations map to existing pagegn allow overlap with computation and other communication. Al-
in the application’s page table. Pushing the responsibility of en-yhq,gh the costs of DMA registration cannot be eliminated alto-
abling pages for DMA down to the network hardware comes at angether, Firehose attempts to amortize these costs over many opera
expected increase in hardware cost and complexity, but also leadgg s \hile allowing one-sided operations as a common case. The
to significant software maintenance costs. On top of requiring plat-g|qyithm is presented through the next three subsections: require-
form and OS-specific modifications, hardware-assisted approacheg,ants of GAS languages that motivated the need for Firehose, a

must generally be continuously updated as changes are made i@escription of the algorithm itself, followed by a comparison with
internal Virtual Memory subsystems (which is likely to occur fre- 5inar DMA registration approaches.

qguently in open source OS’s). Nevertheless, in terms of perfor-
mance and scalability, the advantages of these networks usuall .

outweigh the disadvantages, which makes hardware-assisted regié—'l' GAS Shared-Memory Requirements

tration the preferred approach for GAS language implementations.

The second general registration approach, pinning-based, re- The message-passing paradigm provides good performance for
guires the programmer to explicitly set up the regions of memory parallel applications that can be cast into a bulk synchronous com-
to be enabled for DMA operations. This translates into marking munication pattern (mainly through the ubiquitous MPI), however
the relevant memory pages as non-pageable (referred to onwarilacks the programmability of shared-memory style programming.
as pinned) in main memory. Pinning user-level virtual memory GAS languages attempt to consolidate both approaches, both on
pages instructs the OS that the underlying physical pages canndtaditional highly-coupled systems and distributed systems such as
be swapped out until the application terminates or explicitly unpins networks of workstations (clusters). The global shared memory ab-
them. Due to this restriction, the upper bound on the amount ofstraction provided by GAS languages makes it possible to program
memory that can be pinned at one time (and therefore made availparallel applications in a shared-memory style, regardless of how
able for remote access) is limited by the size of physical memorythe memory is organized in the underlying hardware, while still pro-
(in practice, the limit is actually somewhat less than physical mem-viding good performance and control over data placement. While
ory size, depending on the OS and NIC hardware). This restrictionhigh-performance networks for commodity cluster computing have
is especially problematic in 64-bit applications with large memory been performing rather well in the realm of message-passing over
requirements where the total virtual memory space in use may fathe years, many still do not have good support for implementing
exceed the physical memory size (although the actual working seplobally-shared memory. The limiting factors are strongly related
may be rather small). Some NICs (such as Infiniband) may alscto their support for low-latency, low-overhead one-sided remote
have limits on the number of separate regions of contiguous virtualmemory operations or in the amount of memory that can be made
pages that can be simultaneously pinned. available for remote operations.

Previous work with pinning-based DMA registration has in- GAS languages encourage the use of distributed data structures
volved optimizing performance of remote memory operations us-— for example, UPC provides language-level support for shared ar-
ing strategies adapted to the underlying network hardware. Theseays striped across nodes. As this translates into providing shared

2. Background

2

memory across disjoint physical memory spaces, local memory ref-
erences and computation are frequently interleaved with remote
memory references through the network interconnect. GAS lan-
guages also make it easy to express remote memory operations,
and consequently the performance of GAS language applications
tends to be sensitive to the latency and CPU overhead associated
with performing small (generallx 8 byte) remote memory oper-
ations. As a result, GAS language implementations are generally
carefully designed to support low-latency, low-overhead, small re-
mote memory operations, in addition to the traditional design goal
of providing high bandwidth for large message data transfers.

Using a communication system such as GASNet, language-level
remote memory references are translated into network communica-

tion events — typically one-sided gets and puts. Consequently, the 3

availability of truly one-sided remote memory operations is impor-
tant for the efficient implementation of GAS languages — specifi-
cally the ability to perform puts or gets on remote memory without
interrupting the remote host processor or waiting for it to explic-
itly poll the network. In [7], we extract the performance parame-
ters from several high-performance networks through microbench-
marks and evaluate the level of support for one-sided operations,
with the goal of using this information to guide communication
scheduling optimizations over these one-sided operations in GAS
language compilers.

GAS language applications are prone to use large data work-
ing sets, which has an important influence on the expected com-
munication and memory access patterns. For example, large dis-
tributed shared memories make it easier for programmers to use
unstructured distributed meshes (rather than structured ones) and
distributed sparse matrices (over dense ones) — algorithms over such
irregular data structures are generally more difficult to express us-
ing explicit message-passing communication. Although it would
be difficult to come up with a generalization relative to the size of
the working data sets of such algorithms, it can be maintained that
memory references (or memory access patterns) are prone to be di-
rected over a large portion of memory, possibly bounded only by
virtual memory. Since this paper is mainly concerned with making
it possible to efficiently support large amounts of shared memory
over clusters, the following points enumerate the important param-
eters in evaluating a memory registration strategy for implementing
GAS languages over pinning-based networks:

1. Memory usage and size of working set

tion memory space. GAS languages differ in allocation pat-
terns. For example, the current implementation of Titanium
has no specific allocation pattern, such that remote memory
accesses may appear scattered in virtual memory. Conversely,
UPC implementations generally manage remote DMA seg-
ments as heaps and follow a well-defined memory allocation
pattern: heaps grow monotonically upwards or downwards in
response to the application’s memory requirements [13]. (Ad-
ditionally, multithreaded UPC implementations divide a large
segment into smaller thread-specific memory heaps). This reg-
ularity can be exploited in designing a memory registration
strategy.

Cost of registration

Registration cost, specifically the time required to pin and un-

pin a memory page on the given network interconnect, can be
a significant performance factor. This paper defines registra-
tion cost as the combined cost of the system calls and NIC-

specific commands necessary to pin pages into memory and
subsequently unpin them. Techniques for lowering the over-

head of a single registration operation are generally system-
specific and beyond the scope of this paper — we instead focus
on strategies to reduce the frequency of these registration op-
erations.

. Cost of synchronization messages

Some registration strategies require nodes to exchange syn-
chronization messages to accomplish registration (for exam-
ple, Rendezvous requires a round-trip of synchronization mes-
sages to register memory before the transfer begins, and some
final synchronization messages to deregister after the trans-
fer). The frequency and cost of these messages affect applica-
tion performance, both by consuming bandwidth and standing
in the critical path of remote accesses, thereby increasing re-
mote access latency. The latency of synchronization messages
which require a response may also be affected by the remote
host's attentiveness to the network. An efficient registration
strategy should strive to reduce the number synchronization
messages necessary.

3.2. Algorithm Description

The Firehose algorithm starts by determining the largest amount

Memory usage represents the total memory that is used®f application memory that can be registered. This constitutes the

throughout the entire run of the application. If this value is

upper bound on the total number of physical pages that can be si-

within reasonable limits of the amount of physical memory, it multaneously pinned and is generally a function of the size of phys-

may be reasonable to simply pin everything at startup. This

ical memory. In order to prevent the application from swapping on

would enable one-sided DMA on every remote operation ini- its memory references to non—sh_ared memory and respect the mem-
tiated from or to the pinned memory region. Conversely, the 7Y reqw_rer_nents of other running processes and .the kernel,_th|s
size of the working set represents the data structures and anyalue is limited to some reasonable (tunable) fraction of physical

other program code being actively accessed over some apprd!'€Mory.

priate time period. The working set is likely to be limited

If this amount corresponds to a total df bytes usingP byte

by the amount of physical memory (otherwise the application P29€s, then a total df// > pages can be pinned at any time during
would frequently be swapping), and this tendency can be ex-&xecution. Since a node must support incoming remote memory
ploited in designing an adaptive memory registration strategy. operations from any other node in a parallel job, the available space

can be evenly divided andl = | M

2. Memory access pattern

mj physical pages can

be guaranteed to each remote node. A firehose is a conceptual han

The pattern of memory allocation and access on remote nodeslle to a remote page and each node owhef these firehoses to
affects the way pinning behavior evolves within the applica- every other node. A node has total control over the fixed number of

3

firehoses it owns, and is free to use any or all of them to establish 3. Upon receiving a firehose move request, the virtual pages be-

mappings to remote pages (pinning those remote pages) in order to
satisfy pending remote memory operations.

Once a node has properly situated one of its firehoses, mapping
it to a region in remote virtual memory (via a round-trip synchro-
nization message), the remote node guarantees that virtual page will

ing released (if any) are unpinned and the new set of pages is
pinned. A reply confirming the pinned destination memory is
sent.

4. The one-sided DMA put operation may be sent.

remain pinned for the duration of the mapping. The requestingnode The above series of events represents an unpolished version of
can now freely “pour” data through the hose to or from that region the algorithm. There are many potential optimizations and imple-
of remote shared memory, in the form of one-sided remote DMA mentation details in dealing with firehoses, both on the requesting
puts and gets. A firehose can be efficiently reused for multiple sub-and receiving node:

sequent operations to the given region, exploiting the temporal and
spatial locality of application memory references to amortize setup

costs over many operations. As such, the Firehose algorithm is a
distributed strategy for managing pinned memory. Figure 1 por-

trays a typical runtime snapshot of how two nodes use their fire-

hoses to map selected remote pages on one node.

Node A Node B Node C

refcount = 2
refcount = 1

|

—_ -

refcount = 2 ‘ 1

‘ refcount = 0 2
5

6

refcount = 1 ‘

‘ refcount =1
refcount = 2

rmhwﬂ

e
Firehoses to B _ Firehoses to B
refcount =0
refcount = 1
T
B Memory Space

Figure 1: Runtime snapshot of two nodes (A and C) mapping their fire-
hoses to another node (B)

Implementation of the Firehose algorithm requires a thin control
layer (such as Active Messages [27]) for the handshaking that takes
place when a host wishes to move a firehbsghe following steps
illustrate how a remote memory put operation can be completed
with Firehose:

1. The put operation consults a table of firehoses for existing
mappings to the remote node. If the destination memory is
fully mapped by firehoses (i.e. a firehose “hit”), the put can
be completed entirely with one-sided remote DMA,; if not, the
second step follows.

2. A firehose move request is sent, which communicates a reas-
signment of firehoses. In general this involves moving of fire-
hoses (by updating state metadata) - releasing old mappings
which are not being used in favor of new ones.

IActive Messages are an integral part of the GASNet API, and the synchroniza-
tion messages in our Firehose implementation use the same AM-over-GM frame-
work discussed in section 4.1

Virtual pages may be grouped together into contiguous multi-
page “buckets” (with a size fixed at compile-time) which are
always managed together to effectively increase the page size
of the system and reduce the size of Firehose bookkeeping
data. The use of multi-page buckets may also help to limit the
number of separately pinned regions of pages, on networks
such as Infiniband where such regions may be a limited re-
source;

Each node associates a reference count with every locally-
pinned bucket to track usage. While the reference count is
greater than zero, this bucket is not a candidate for unpin-
ning because it is currently in-use by one or more incom-
ing firehoses or locally-initiated operations. While the bucket
is pinned, subsequent remote requests to attach a firehose tc
this bucket or locally-initiated operations needing this bucket
merely increment the reference count and incur no registra-
tion overhead (this situation is actually quite likely, especially
in collective operations such as broadcast or reduce). The lo-
cal node does not need to explicitly track which remote nodes
have mapped a firehose to a given local bucket, because all
incoming firehoses are entirely controlled by the remote node,
and therefore we rely on those nodes to cache their active map-

pings;

Firehose supports lazy deregistration using the bucket-based
reference count. By allowing a configurable number of O-
refcount buckets to remain pinned in memory, much of the
burden of unpinning and re-pinning is sidestepped. Although
this may lead to increased physical memory consumption,
it has the potential to greatly reduce pinning overhead as a
bucket lazily kept pinned may be the target for subsequent
firehose moves or local operations. Networks with a high reg-
istration cost should be configured permissively with the lazy
unpinning parameter;

A victim FIFO queue tracks pinned buckets with zero refer-
ence counts. Victim buckets are evicted when firehose move
requests arrive for buckets not currently pinned or when we've
reached the configurable limit of physical pages in use for pin-
ning;

A reference count is also tied to each firehose. The count is
incremented when an local operation is initiated through the
firehose and decremented once the operation completes. This
count prevents race conditions between concurrent or overlap-
ping operations that need to establish new firehose mappings.
Updating the count constitutes a fairly low level of overhead
and synchronization, which turns out to be practical for multi-
threaded implementations of Firehose.

Table 1 summarizes the data structures used to implement the

Firehose algorithm with all these optimizations.

cross page boundaries into unmapped virtual space (causing
segmentation faults) - some memory allocator support may be
required to allow multi-page buckets.

gﬁiture Description In our implementation, bucket size is set at system compile time,
. . andM and MAXVICTIM are set at runtime by the user (or more
¢ Zz?rlfflg%zihogu%ﬁs p:/ilr:tr1ue6:jl SSS@SS' with one likely the person installing/tuning GAS_Net for a partipular site).
« Each entry contains a bucket reference count and The total physical memory usage of Firehose (i.e. pinned mem-
pointers for the Bucket Victim FIFO (doubly- ory managed by the algorithm) never exceeds the upper bound of
Local linked list) M+MAXVICTIM (so the sum should be restricted to be some rea-
Bucket o Reference count reflects locally-initiated RDMA sonable fraction of the physical memory siz®)is the maximum
Table operations in-progress for the pages of this bucket amount of memory that can be pinned at any time as a result of re-
(e.g. source of alocally-initiated put) and the num- mote firehose requests, and the victim FIFO can additionally keep
ber of remote firehoses mapped to the bucket up toMAXVICTIM pages which aren’t committed to a remote fire-
o Table can be implemented as a simple array on 32- - hose (to reduce the cost of repinning them later, benefitting from
bit platforms temporal locality). Local pin operations (i.e. source of a put or
destination of a get for pages not already pinned) can be satisfied
e Hash table keyed on tuple of remote node and by stealing some pages off the victim FIFO (or simply pinning new
bucket virtual address with one entry per attached pages and later returning them to the victim FIFO if it's below the
firehose _ length limit). In any case, the local node is guaranteed at least
Firehose ° iﬁ;ﬁigtg t(;\(()anttj;)rl]s;n;le;engir;ggr(fzgftr;nté :iirr:;]’g;e MAXVICTIM space for local pin operations to unpinned pages, and
Table Victim FIFO (singly-linked list) the algorlth,m will still never exceed the+|_v|A_xv_|c_T|M ha_rd limit
e Reference count reflects the number of locally- (although it’s expecte_d to rarely reac_h t_hls limit in pract!ce_).
initiated operations in-progress which touch this _ Afgture work |tem is to make the victim FIFO length limit adap-
remote bucket and are therefore using the firehose ~ tive —i.€. allow the victim FIFO to grow beyondaxvicTim (per-
haps up to some higher upper limit) provided the total amount of

Table 1: Primary data structures in Firehose implementation

pinned memory is still below the+mMAXVvICTIM hard limit. This
optimizes for the case when the page demands of remote nodes are
unbalanced - it allows us to keep extra pages in the victim FIFO

In order to be adaptive to various networks and memory config-to optimize the performance of the remote nodes who are targeting
urations, the Firehose algorithm has the following tunable paramethis node heavily, essentially allowing them to “borrow” some of

ters:

1. Maximum amount of physical memory used for remote
firehoses (1)

This parameter limits the amount of memory the algorithm
guarantees to remote nodes as pinnable at application startu
(m). This amount of memory is consumed if and only if ev-
ery remote node uses up all of its firehoses to a given node. It
is likely that the upper bound for this value is limited by the

network or other operating system level requirements.

2. Maximum size of bucket victim FIFO queue (MAXVICTIM)

the physical pages which were statically allocated to other remote
nodes that are not using all their firehose connections to this node.
This also helps to ameliorate potential scalability problems in the
static allocation of firehose resources by reducing the performance

enalty in an unbalanced communication pattern when a remote
Eode has insufficient firehoses to cover its working set (most of the
unpin-repin costs can still be avoided).

3.3. Firehose and Existing Pinning-based DMA strategies

Although hardware-assisted memory registration eases the port-

This parameter has been explained previously for its benefitd"d task for GAS languages, most existing high performance NICs
in minimizing the registration overhead for networks where &ré notequipped with the sophisticated memory interface hardware
either the pin or unpin operations are expensive. When a locafeéquired to make this approach work. Table 2 provides a sum-
bucket reference count reaches 0, it is added to the head ofary of current DMA registration strategies, separating hardware-
the victim FIFO queue - when the queue length exceeds thisassisted from software-based approaches. Their advantages ant

configurable parameter, buckets are removed from the tail ofdisadvantages are explained below. . .
the queue and unpinned. Of the pinning-based DMA strategies listed in the table, the Pin

Everything approach is different since pinning is not done on de-

. Bucket size mand — a single segment of memory is pinned at startup (or equiv-
Although Virtual Memory Managers use page size as the ba-alently, pages are pinned as they are first used by the memory al-
sic unit of virtual and physical memory, the Firehose algo- locator and kept pinned for the life of the program). If total mem-
rithm deals with memory in units of bucket size. Bucket size ory requirements are known to be constrained to a reasonable size
is equal to page size by default but may be configured to be awithin the physical memory limits of the host, it might be preferable
multiple of page size to adapt to other requirements (for exam-to preemptively pin the entire remotely-accessible region of mem-
ple to reduce the size of the Firehose bookeeping data). Notery at startup in this manner. In this case, every DMA operation
that allowing buckets to span more than a single page mayfalling within the segment can complete as one-sided since it does
present new challenges since bucket registration requests magot require additional synchronization between hosts to complete.

5

Strategy Advantages Disadvantages
Zero-copy, One-sided, Full memory space accessi
No handshaking or bookkeeping in software

Hardware-assisted bII(?I'ardware complexity and price, Kernel modifications

Limited memory, May require a custom memory allo-
cator

Two-sided, Local copy costs (CPU consumption),

No r(_aglstratlon cost at runtime, Full memory space aq\'/lessaging overhead (metadata and handshaking pro-
cessible tocol)

Pin Everything Zero-copy, One-sided (no handshaking)

Bounce Buffers

Zero-copy, Full memory space accessible, Only hal
shaking is synchronous

Zero-copy, One-sided (common case), Full mem
Firehose space accessible, Only handshaking is synchron
Registration costs amortized

Rendezvous ndI"Wo-sided, Registration paid on every operation

;rXéessaging overhead (metadata and handshaking pro-
Lfot:ol) on firehose miss (uncommon case)

Table 2: Summary of available DMA registration strategies

Once the memory region is pinned, it is used without interruption incoming operations.
(pinning/unpinning) throughout the entire run of the application. For large messages, the cost of pinning on demand using a Ren-
Otherwise unusable with larger memory requirements, systems usdezvous protocol can be amortized over more data and provide a
ing the Pin Everything approach will typically provide a special net performance improvement over the use of many bounce buffers.
memory allocator that manages the pool of pinned pages and reRendezvous protocols are carried out in two steps. The first sends
quires applications to allocate all remotely-accessible memory usa message to the remote node indicating the region to be pinned
ing this allocator. This approach may still incur some on-demandfor DMA access. For puts, the remote node processes the message
registration costs for pinning local memory if the client is permit- and pins the relevant memory region, then sends a reply to indi-
ted to initiate operations to/from local memory areas outside thecate the DMA operation can be initiated. A similar approach may
pre-pinned segment (or alternately, bounce buffers could be usette taken for gets, although as an optimization the reply may coa-
for local memory, as described below). lesce acknowledgment and payload (if permitted by the underlying
For systems with |arger memory requirementS, some level Ofnetwork hardware). Optionally, there may be some final handshak-
synchronization is required between hosts in order to permit remoténg to unpin the relevant regions once the DMA transfer is com-
access on demand. plete. Even though both hosts must initially be synchronized, Ren-
dezvous only requires the handshaking phase to be synchronous

pinned memory to hold data for outgoing or incoming DMA oper- (and not the entire data transfer). Once the local and remote pages

ations. These buffers are posted based on criteria such as messag Pinned, or known to be pinned, the requesting node is free to

sizes or fair sharing of buffers between nodes. Once a DMA opera-'nitiate any DMA operation without interrupting the host proces-

tion completes in the case of a put, the target processor is informed®"- However, the cost of registration is paid on every operation,

of its delivery and must copy the data to the final remote destination Vich is prohibitively costly for small messages and debatable for

Similarly, when a get request is received, the targeted node copielar9er messages. Nieplocha et al. [20] show that the message size
the data into a bounce buffer and effectively executes a put operaSToSSOver point for achieving optimal bandwidth (using Bounce
uffers for small messages and Rendezvous for large messages)

tion to the requesting node. The main advantage of using bouncg ;
buffers lies in the cost of registration being paid only at startup — 'S 9réatly dependent on the underlying network hardware and soft-

once the bounce buffers are pinned, no additional memory regiondVare- On Myrinet/GM, the cost of unpinning constitutes a very
need to be pinned and all the user's virtual memory space is effec/@r9€ portion of the total registration cost. For this reason, most
tively accessible for puts/gets. The primary disadvantage is that th&*iSting Myrinet/GM communication layers use Rendezvous and

Bounce Buffer approach is strictly two-sided, and consequently the®Mit the unpin step (e.g. MPICH-GM [4]) or simply discard Ren-

latency for remote operations is likely to suffer. Additionally, copy- dezvous altogether in favor of two-sided pipelined Bounce Buffers

ing costs may be significant (even for small messages) since thei'lg]' Fortunately, registration cost is network dependent — previous

interrupt remote host processors and dirty CPU caches and TLB's/WOK [20] has shown that other networks such as Giganet/Emulex

and the CPU overhead for local copying restricts the potential for AN offer more competitive memory registration performance, al-

computational overlap (especially with large messages). Moreovert"ough the cost s still significant.

the task of managing the bounce buffers while still providing good

communication concurrency and scalability can introduce signif- 4. Results

icant complexity and handshaking overheads, depending on the

level of hardware support. Finally, the approach remains question- In order to demonstrate the Firehose algorithm, we've developed
able in the presence of highly-tuned communication systems wheran initial implementation and measured its performance on two ap-
a wide range of non-blocking operations and fully-threaded clientplication benchmarks and a synthetic microbenchmark written in
configurations increase concurrency of communication. There is alitanium. These were run on the LBNL Alvarez cluster, which
scalability problem when the number or size of network operationsconsists of 2-way PIlI-866Mhz nodes with 1GB of RAM and Myri-
does not match the anticipated load, as bounce buffer efficiency reeom’s Myrinet 2000 PCI-C network interface cards.

lies on the rate at which buffers are posted relative to the rate of Titanium[15] is a Global-Address Space language and an ideal

The Bounce Buffer approach uses temporary buffers residing in

6

client for the Firehose algorithm. Titanium is an explicitly paral- for the Myrinet interface, a network mapper and the GM API (li-
lel SPMD dialect of Java developed at UC Berkeley[5] to support brary and header file$) GM provides protected user-level access
high-performance scientific computing on large-scale multiproces-to the NIC; reliable, ordered delivery of messages; recovery from
sors, including massively parallel supercomputers and distributedtransient network problems; scalability to thousands of nodes and a
memory clusters with one or more processors per node. In Titadlow CPU utilization on Myrinet hosts [18].

nium, all data has a user-controllable processor affinity, but parallel

processes may directly reference each other's memory to read ang o Testing Methodology

write values or arrange for bulk data transfers.

Titanium'’s distributed memory backends can utilize a wide va-
riety of high-performance network interconnects, including Ac-
tive Messages-2 [17], MPI, IBM LAPI, Cray shmem, and Ether-
net/UDP. We've recently added support for using our GASNet [10]
implementation (which uses the Firehose algorithm on Myrinet net-
works) as the communication system.

Empirical results were collected to compare the performance of
the Firehose algorithm and two flavors of the Rendezvous algo-
rithm: with-unpin and no-unpinof remote pages. Upon sending
a put, the Rendezvous algorithm pins the source memory (if nec-
essary) and sends an Active Message to the remote node indicat-
ing the destination memory to be pinned. Once the put is com-
plete, the Rendezvouwsith-unpinstrategy sends an additional Ac-
tive Message to unpin the remote pages. Although the Rendezvous

GASNet provides a two-tier interface: a core and extended API.no-unplr'lapprogch IS used by some Myrlnet communlca}tlon I?y-
ers [4], it permits clients to request pinned memory until they've

The core is based on the Active Messages [27] paradigm and is gen—Xhausted hvsical memory. Omitting the unpin step does not con-
eral enough to also implement the extended API. The extended APf phy Y- 9 P P

; . : . . stitute a viable approach for GAS languages, but serves as a good
provides higher-level operations such as blocking and non-blockin . . .)
: . - . etric when comparing to Firehose. In fact, we show that Firehose
puts and gets (with a rich set of synchronization options) and bar'consistentl outperforms Rendezvous, even without unpin, when
riers. GASNet can quickly be implemented on a new network plat- y oulp ' pin,

. ; . . the working set memory size is within Firehoseisparameter. It
form simply by implementing the core APl and using a default ref- . . '
. . . 4 should also be noted that our Rendezvous implementation benefits
erence implementation of the extended API written in terms of the

core. Although this port is sufficient, it is often sub-optimal: im- from the highly tuned non-blocking primitives available in GASNet

. ; and is also augmented with caching of local pinned pages to avoid
plementors are encouraged to directly implement selected Opera, - i repin costs for local bades (a significant performance gain
tions in the extended API to take advantage of any hardware sup- P P bag 9 P 9

port or special features provided by the given network (for exam_When issuing many successive Rendezvous puts from overlapping
memory locations).

For the following tests, Firehose assumes= 400MB of

pinnable memory anshaxvicTIM = 50MB, which means each

node owns| g5gastnodes—17) = Limodes1y) firehoses to each re-

mote node, and the limit on total pinned memoryiisMAXVICTIM

= 450MB. The tests are run long enough for Firehose to reach a

steady state. The bucket size is set to single-page buckets to provide

an upper bound on the overhead in managing Firehose metadata.

4.1. Platform description: GASNet and GM

ple, remote DMA or hardware-assisted barrier). In any case, the
GASNet interface is flexible, expressive and capable of efficiently .
implementing medium and high-level operations for many remote
memory and collective operations. Figure 2 shows how the two-
tier interface offers a portable, high-performance interface to the
compiler over various network hardware.

4.3. Application Benchmarks

Firehose was benchmarked using two parallel applications im-
plemented in Titanium: Cannon’s Matrix Multiplication and a
Bitonic Sort. In Cannon’s algorithm [11], nodes are laid out on
GASNet Core AP| a N x N mesh and multiplication results are optimized to be ac-
cumulated locally. If results are accumulated on remote nodes, put
operations are used (the results below use 4 nodes). The bitonic
sort algorithm dividesV integers equally among 8 nodes and runs
a parallel quick sort. Results are then merged using a compare and
Figure 2: GASNet communications system layered a_pp_roach: parts of theexchange algorithm.

GASNet core may be bypassed to offer optimized hardware op- - application results are presented in Table 3. Because of the rela-
erations. tively small working set, Firehose never needed to detach firehoses

When GASNet is ported to a network such as Myrinet, the or unpin pages in the firehose move operation, it merely attached
lowest-level communication layer available is generally used to im- New firehoses that' were free. In the Firehose results shown, fire-
plement the GASNeatonduitfor that network (GASNet offers con- hose moves constitute less t_har! one pe_zrcent of all puts, and vary
duit implementations for many high-performance networks — code'” perforrfrlfgin%e for both applllcatlons._ Since Canﬂon makes heav-
is available online [2] and includes our implementation of the Fire- 1€ Use Of firehose moves (almost 6 times more than Bitonic sort),
hose algomhm. in the GM con(_jun). GM is a Myrinet low-level 2Wwith the anticipated release of GM 2.0, GASNet/GM will also support one-
message-passing system that includes a driver, a control programided gets through the Firehose algorithm.

7

Application Total Puts | Pinning Strategy Total Runtime Type of put Number of puts (%) Avg. Put Latency
Cannon Matrix 1500 000 | Rendezvousvith unpin 5460.00s pin-put-unpin 1 500 000 (100%) 5141 us
Multiply Rendezvougo-unpin 797.45s pin-put 1500 000 (100%) 34 us
Firehose 780.81s move firehose 2934 (0.2%) 46 us
one-sided 1497 066 (99.8%) 14 us
Bitonic Sort 2125000| Rendezvousvith unpin 4740.05s pin-put-unpin 2125000 (100%) 522 us
Rendezvouso-unpin 289.45s pin-put 2125000 (100%) 33 us
Firehose 255.25s move firehose 518 (0.02%) 54 us
one-sided 2124482 (99.98%) 15 us

Table 3: Application performance with the Firehose and Rendezvous strategies

firehose moves are more likely to target a previously pinned mem-
ory location. This is shown in the difference in average firehose
move times (46 uss54 us) — a move request satisfied by attach-
ing firehoses to buckets in the FIFO queue is completed within 5us
while an actual pin operation delays the request by 40 us. Results
obtained show that reuse of buckets in the FIFO queue is benefi-
cial as the average move time as part of the remote firehose handler
for both applications is respectively 5us and 14us (significantly less
than the average pin time of 40us). On the requesting node, the total
overhead for building the firehose list, updating the firehose table
and other bookkeeping tasks consumes less than a microsecond.
The remaining time is shared between the messaging overhead for
the Active Message and other GM/GASNet overheads. While the
request/reply tends to be in the 20us range, this result varies with
node attentiveness to the network.

Results show the average put latency under Firehose is twice as
good as the Rendezvous-unpinapproach, and several orders of
magnitude better than the Rendezvaiith-unpinapproach. More-
over, both applications show that the common case of using one-

point (450 MB), the Firehose latency increases sharply, pass-
ing Rendezvouso-unpinonce 3% of the 8-byte puts require
unpinning, and approaching the Rendezvaiith-unpin per-
formance (not shown) — the high 6ms penalty for each un-
pin operation quickly dominates all other factors. It should be
noted that for working sets larger thantmMAXVICTIM , the
Rendezvouso-unpinalgorithm is “cheating” in that it has
more thanM+MAXVICTIM pages (450MB) simultaneously
pinned (because it never unpins any remote or local pages) and
if M+*MAXVICTIM constitutes a hard limit on pinnable phys-
ical pages, Rendezvoum-unpinwould have crashed before
reaching this point. Under implementations where the unpin
operation is less expensive, we expect Firehose to display bet-
ter performance characteristics pastthevAxXvICTIM point.
Additionally, the hit rate and performance should be even bet-
ter under a more realistic access pattern that exhibits better
spatial and temporal locality within the working set than uni-
form random distribution.

sided puts over firehose moves is achieved nearly 100% of the time, & w M:“";“i"r:hosew
and both applications show a noticeable improvement in total run- Rendezvous (f1o unpin) -/

70 -
ning time when using Firehose (applications which are less latency

tolerant or more bandwidth sensitive should show an even greate
improvement).

60 [~
%)

o
=
S
g
=}
S

=

50 [RUURTSTEEEEEEL

4.4. Synthetic Microbenchmarks or

30 -

ency

We've developed a synthetic benchmark which measures the®

20
Firehose and Rendezvous approaches to compare the achieveable
10 - b

bandwidth and start-to-finish latency for single operations.

e Small-message latency Using 8-byte puts between two
nodes, the latency performance of Firehose under various
working set memory sizes is shown by scattering puts in a uni-
form random pattern over increasing remote memory spaces.
The put operations initiated on each node are sourced from
a random memory location within an area of memory of size
MAXVICTIM in order to better correlate increasing destination
memory space on firehose movement. Figure 3 shows how
Firehose consistently outperforms the best Rendezvous solu-
tion by 30 us when the remote access working set size does
not exceedv+MAXVICTIM (with-unpinis not shown since
its numbers are steadily in the 6ms range, which is over 100
times slower). The dramatic reduction in put latency is a direct
consequence of Firehose’s ability to remove extraneous mes-
sages from the critical path in the common case of a firehose
hit, and use entirely one-sided DMA. Past theMAXVICTIM

0
50 100

1 1 1 1 1 1 1
150 200 250 300 350 400 450
Working Set Memory Size (MB)

500

Figure 3: 8-byte put latency over increasing working set memory size

(M = 400MB)

e Large-message bandwidth Figure 4 shows results from a

test where put operations of 64 KB are sent from one node
to another, covering an increasing memory space in a uniform
random distribution of targets. For working sets smaller than
M, Firehose effectively provides a 100% hit rate and all puts
proceed at full DMA bandwidth with no handshaking over-
heads — this corresponds to the case where the working set of
remotely referenced pages fits within pinnable physical mem-
ory, and we expect this to be the common case for real scien-
tific applications (note the actual value wfis a tunable Fire-

200

hose parameter whose optimal value is site-dependent). When
the working set exceeds, the Firehose hit rate decreases (in-
creasing the amount of handshaking required to handle misses)
and performance degrades gracefully, eventually approaching
the performance of Rendezvowgh-unpinat very large work- 2
ing set sizes (at which point the application is probably swap-2=
ping to disk to accomodate the working set which exceeds®
physical memory). Unpin operations are relatively less expen—é
sive in the large message test since the latency to complete &
one-sided 64 KB put is much higher in comparison to an 8 byte
put. Rendezvouso-unpinis shown for comparison purposes, :
however it should again be noted that beyenevAaxvicTim e ‘
(450MB) the Rendezvouso-unpinalgorithm has exceeded 0 20 40 60 80 100 120
the limit on pinnable physical pages (and therefore is not re- Message Size (Kbytes)

ally a viable solution at that point).

Firehose ——
Rendezvous (no unpin) ~-----
Rendezvous (with unpin) -----

Figure 5: Peak Bandwith for Rendezvous and Firehose
e Peak bandwidth. Peak bandwidth for a range of put sizes

is reported in Figure 5 for both algorithms. This test uses)) .
export pinned pages to remote nodes which then mapped them into

repeated puts to/from the same location, so Firehose effec - i
tively provides a 100% one-sided hit rate. Firehose beats Ren!€ Page table, and provided hardware support for translating CPU

dezvousno-unpinby a noticeable margin because it requires store operations into RDMA puts. It is widely accepted that reg-
no handshaking messages before performing a DMA. Ren-istration costs on pinning-based networks constitute an important
dezvouswith-unpinconsistently performs dismally due to the bottleneck. As a part of the PM communications library, registra-

high cost of unpinning on Myrinet which must be paid on ev- tion is addressed usingRin-down Cachg5], where mappings of
ery operation. locally pinned pages are cached on a LRU basis. Although this

constitutes an improvement over blindly pinning and unpinning for
every remote memory operation, each of these operations require a

M=400MB : . . .
180 Firdhos previous network roundtrip such that both source and destinations
Rend in - i
180 REGEREMRIA .24 are pinned.

140
. 20 6. Conclusion
S o
g The Firehose algorithm presented in this paper is motivated by
g r b the inadequacy of current pinning-based networks to support re-
= 60t s mote memory operations which access large portions of globally-
pn | shared memory. Efficient implementation of GAS languages re-
quires communication systems capable of providing low-overhead
il e i and low-latency for small, non-blocking remote puts/gets and high-
0% p ps 200 s pos 200 bandwidth, zero-copy transfers for large puts_/gets. On networks
Working Set Memory Size (MB) such as Myrinet/GM, these goals are best achieved through the use

of fully one-sided RDMA operations, but the need to perform ex-
Figure 4: 64KB put bandwidth over increasing working set memory size plicit DMA registration on the remote host (without compromis-
(M = 400MB) ing the host’s physical memory resources by simply pinning ev-
erything at startup, or forfeiting the performance benefits of truly
one-sided communication by imposing handshaking and synchro-
5. Related Work nization) poses an interesting algorithmic challenge.
The Firehose algorithm presented successfully exposes one-
User-level networking has provided many benefits by removing sided, zero-copy communication as a common case, while mini-
the operating system and intermediate buffering from the critical mizing the number of host-level synchronizations required to sup-
path. Its viability has been demonstrated through the implemen-ort remote memory operations, and amortizes the cost of syn-
tation of user-level networking libraries on commodity networks, chronization and pinning over multiple remote memory operations.
such as U-Net[26], FM[22], BIP[23] and fbufs[12]. In some cases, Firehose reaps the performance benefits of a Pin-Everything ap-
a suggested coupling of the network interface with the processor'proach in the common case (without the drawbacks) and reverts to
TLB (as in Stanford FLASH[16]), or the integration of a TLB di- Rendezvous-like behavior to handle the uncommon case. Empiri-
rectly on the interface [28] have proven useful in maximizing re- cal results with synthetic and application benchmarks demonstrate
motely addressible user memory. These approaches are impothat the cost of handshaking and memory registration in Firehose
tant in that they do not require the programmer to be directly in- is negligible when the set of remotely referenced memory pages on
volved in managing DMA-enabled user memory. SHRIMP’s Vir- a given node is smaller than the physical memory, and in applica-
tual Memory-Mapped Communication system [8] allowed users totions with larger working sets the performance degrades gracefully

9

and consistently outperforms conventional approaches. We believg12] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-
the Firehose algorithm is a near-ideal solution to the DMA registra- domain transfer facility. [lSymposium on Operating Systems Prin-

tion problem presented by pinning-based networks such as Myrinet ciples pages 189-202, 1993.

for GAS language implementations, and furthermore Firehose is[13] J. Duell. Memory management in the UPC runtime, 2002. http:
sufficiently general that it should prove to be a useful strategy for /lupc.Ibl.gov.

implementing other communication systems with related goals on[14] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC specifica-
P 9 y 9 tion, v1.0, February 2001. http://upc.gwu.edu.

similar networks. [15] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike,
and K. Yelick. Titanium language reference manual. Tech Report
7. Future Work UCB/CSD'01'1163, U.C. Berkeley, November 2001.

[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,

Future work includes evaluating the performance of Firehose M. Rosenblum, and J. Hennessy. The Stanford FLASH multiproces-
with get operations, once Myrinet releases the eagerly anticipated sor. InProceedings of the 21st Annual International Symposium on
version of GM which will support one-sided DMA gets. Every- Computer Architecture (ISCA)994.

thing in the Firehose algorithm and implementation generalizes nat-[17] A. Mainwaring and D. Culler. Active message applications program-
urally to gets, once the underlying transport provides that capability ming interface and communication subsystem organization. Tech

; ; ; ; ; Report UCB/CSD-96-918, U.C. Berkeley, 1995.

(in the meantime, gets are implemented using an Active Messag ; ; ,

which initiates a Firehose put back to the requestor). e[lg] \“,Alygcfdrﬂgoghfushzﬂog/'ze ssage Passing SysteMyricom, Inc, GM
We are also interested in implementing the Firehose aIgorithm[lg] 3. Nieploché and B. Carpenter. ARMCI: A portable remote mem-

on other pinning-based high-performance networks with DMA ca- ory copy library for distributed array libraries and compiler run-time
pabilities — Infiniband [3] is one such potential target. systems. IProc. RTSPP IPPS/SDP’99999.
[20] J. Nieplocha, V. Tipparaju, and D. Panda. Protocols and strategies for
optimizing performance of remote memory operations on clusters.
In Workshop Communication Architecture for Clusters (CAC02) of
IPDPS’02, Ft Lauderdale, F12002.
This work was supported in part by the Department of En- [21] R. Numrich and J. Reid. Co-array fortran for parallel programming.
ergy under DE-FC03-01ER25509 and DE-AC03-76SF00098, by In ACM Fortran Forum 17, 2, 1-311998.
the National Science Foundation under ACI-9619020 and EIA- [22] S.Pakin, M. Lauria, and A. Chien. High performance messaging on

: : } workstations: lllinois Fast Messages (FM) for Myrinet. 1995.
9802069, and by the Department of Defense. The information pre 23] L. Prylliand B. Tourancheau. Bip messages user manual, 1997.

sented here does not necessarily reflect the position or the po!ic 24] Quadrics Supercomputing.Quadrics QSNet Interconnec002.
of the U.S. Government and no official endorsement should be in- http://www.quadrics.com.

ferred. We'd also like to thank Boon Thau Loo for providing the Ti- [25] H. Tezuka, F. O’'Carroll, A. Hori, and Y. Ishikawa. Pin-down cache:

8. Acknowledgements

tanium application code, and Kathy Yelick, Jarek Nieplocha, Paul A virtual memory management technique for zero-copy communi-
Hargrove, and Myricom for their support and constructive sugges- cation. In12th Int. Parallel Processing Symposiupages 308-315,
tions. 1998.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-
level network interface for parallel and distributed computing. In

References 15th ACM Symposium on Operating Systems Princilages 40—
53, 1995.
[1] Berkeley UPC project home page. http://upc.lbl.gov. [27] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
[2] GASNet home page. http://www.cs.berkeley.edu/"bonachea/gasnet. Active messages: a mechanism for integrated communication and
[3] Infiniband trade association home page. http:/Awww.infinibandta.org. computation. InProceedings of the 19th International Symposium

on Computer Architecturegpages 256—266, Gold Coast, Australia,
May 1992.
[28] M. Welsh, A. Basu, and T. von Eicken. Incorporating memory man-
agement into user-level network interfaces. Technical Report TR97-
1620, 13, 1997.
K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. AGM 1998 Workshop
on Java for High-Performance Network Computing98.

[4] MPICH-GM implementation, v1.2.1..7b. http://www.myrinet.com.

[5] Titanium home page. http://titanium.cs.berkeley.edu.

[6] MPI: A message-passing interface standard. Technical Report UT-
CS-94-230, 1994.

[7] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, [29]
C. lancu, M. Welcome, and K. Yelick. An evaluation of current high-
performance networks. ?DPS 20032003. http://upc.Ibl.gov.

[8] M. A. Blumrich, R. D. Albert, Y. Chen, D. W. Clark, S. N. Dami-
anakis, C. Dubnicki, E. W. Felten, L. Iftode, K. Li, M. Martonosi,
and R. A. Shillner. Design choices in the SHRIMP system: An em-
pirical study. InProc. of the 25th Annual Int'l Symp. on Computer
Architecture (ISCA’98)1998.

[9] N.J.Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,

J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second local
area networklEEE Micro, 15(1):29-36, 1995.

[10] D. Bonachea. GASNet specification, v1.1. Tech Report UCB/CSD-
02-1207, U.C. Berkeley, October 2002.

[11] L. E. Cannon. A cellular computer to implement the kalman filter
algorithm, 1969.

10

