
UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes
PIs: Scott B. Baden and Paul Hargrove

© 2017, Lawrence Berkeley National Laboratory

https://bitbucket.org/upcxx/upcxxhttps://bitbucket.org/upcxx/upcxx

UPC++ at Lawrence Berkeley National Lab

Case 1: Easy distributed hash-table via function shipping and futures

Case 2: symPACK: UPC++ asynchronous task-based sparse Cholesky solver

UPC++ is a library providing lightweight PGAS one-sided communication
and asynchronous remote function execution with a C++ interface

• UPC++ is a C++11 library
• No custom compiler

• Easy on-ramp and integration
• Interoperable with MPI+OpenMP/CUDA/etc
• Enables incremental development
• Replace performance-critical sections with lightweight PGAS

• New extensions under development
• Co-processor memory support, non-contiguous

communication, teams, and active message interfaces

• Application: symPACK, a sparse direct linear
solver for symmetric matrices.

• Challenges: Sparse matrix factorizations have low
computational intensity and irregular communication
patterns.

• Solution: UPC++ function shipping enables an
efficient pull communication strategy and event-
driven scheduling.

• Impact: on average, symPACK delivers a ✕2.65
speedup over the best state-of-the-art sparse
symmetric solver.
UPC++’s one-sided pull strategy avoids the need for
(and cost of) unexpected messages in MPI.

Push – MPI 2-sided communication
Pull – UPC++ 1-sided communication
with/without event driven scheduling

Strong scaling of symmetric solvers
(factorization time only)

Ti
m

e
(s

)

Ti
m

e
(s

)

• Function shipping simplifies distributed data-structure design
• Use a GASNet Active Message to ship updates to the key’s

owner, avoiding round trip communication
• Futures hide the latency of remote operations, naturally express

overlap of independent operations
// c++ "global" variables become rank-local state.
std::unordered_map<int, int> _dht_local;

// owner does the work, result is a future<int>
upcxx::future<int> dht_fetch_inc (int key) {

return upcxx::ship_function(
key % upcxx::rank_count(), // owner in key-to-rank partition
[=]() { return atomic_fNIncr(_dht_local[key]); } // fetch and increment lambda

); // (the shipped function)
}

Cores Cores

Private address spaces

Global address space

Local
task
queue

Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

In-bound function
invocations

Outbound function
invocations

(Hash table partitions: one std::unordered_map per rank)

• UPC++ can directly express irregular comm. patterns
• Effective semantic match for many applications
• E.g. Graph algorithms, bioinformatics, adaptive meshes

1.3.1.17

