
1

GASNet:
A Portable High-Performance

Communication Layer for Global
Address-Space Languages

Dan Bonachea
Jaein Jeong

In conjunction with the joint UCB and NERSC/LBL
UPC compiler development project

http://upc.nersc.gov

Introduction
• Two major paradigms for parallel programming

– Shared Memory
• single logical memory space, loads and stores for communication
• ease of programming

– Message Passing
• disjoint memory spaces, explicit communication
• often more scalable and higher-performance

• Another Possibility: Global-Address Space Languages
– Provide a global shared memory abstraction to the user, regardless

of the hardware implementation
– Make distinction between local & remote memory explicit
– Get the ease of shared memory programming, and the performance

of message passing

UPC (Unified Parallel C)
• A explicitly-parallel SPMD programming language with a

Global-Address Space abstraction
– Superset of the C programming language
– Threads have a private memory area and share a global memory
– Language support for data distribution using shared arrays
– Language support for controlling memory consistency model

• Current UPC compiler implementations generate code
directly for the target system
– Requires compilers to be rewritten from scratch for each platform

and network
– We want a more portable, but still high-performance solution…

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1G

lo
ba

l a
dd

re
ss

 s
pa

ce

Thread 1

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1G

lo
ba

l a
dd

re
ss

 s
pa

ce

Thread 1

Shared

Thread 0

Private 0

Thread
THREADS-1

Private 1 Private
THREADS-1G

lo
ba

l a
dd

re
ss

 s
pa

ce

Thread 1

NERSC/UPC Runtime System
Organization

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code Compiler

GASNet Communication System- Goals

• Language-independence: Compatibility with several global-address
space languages and compilers
– UPC, Titanium, Co-array Fortran, possibly others..
– Hide UPC- or compiler-specific details such as shared-pointer representation

• Hardware-independence: variety of parallel architectures & OS's
– SMP: Origin 2000, Linux/Solaris multiprocessors, etc.
– Clusters of uniprocessors: Linux clusters (myrinet, infiniband, via, etc)
– Clusters of SMPs: IBM SP-2 (LAPI), Linux CLUMPS, etc.

• Ease of implementation on new hardware
– Allow quick implementations
– Allow implementations to leverage performance characteristics of hardware

• Want both portability & performance

GASNet Communication System- Architecture

• 2-Level architecture to ease implementation:
• Core API

– Most basic required primitives, as narrow and
general as possible

– Implemented directly on each platform
– Based heavily on active messages paradigm

• Extended API
– Wider interface that includes more complicated

operations
– We provide a reference implementation of the

extended API in terms of the core API
– Implementors can choose to directly implement

any subset for performance - leverage hardware
support for higher-level operations

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware

2

Our goals in this semester project
(what we've done)

• Wrote the GASNet Specification
– Included inventing a mechanism for safely

providing atomicity in Active Message handlers
• Reference implementation of extended API

– Written solely in terms of the core API
• Implemented a prototype core API for one

platform (a portable MPI-based core)
• Evaluate the performance using micro

benchmarks to measure bandwidth and latency
– Focus on the additional overhead of using GASNet

Extended API – Remote memory operations
• Orthogonal, expressive, high-performance interface

– Gets & Puts for Scalars and Bulk contiguous data
– Blocking and non-blocking (returns a handle)
– Also have a non-blocking form where the handle is implicit

• Non-blocking synchronization
– Sync on a particular operation (using a handle)
– Sync on a list of handles (some or all)
– Sync on all pending reads, writes or both (for implicit

handles)
– Sync on operations initiated in a given interval
– Allow polling (trysync) or blocking (waitsync)

• Useful for experimenting with a variety of parallel
compiler optimization techniques

Extended API – Remote memory operations
• API for remote gets/puts:
void get (void * dest, int node, void *src, int numbytes)
handle get_nb (void *dest, int node, void *src, int numbytes)
void get_nbi(void *dest, int node, void *src, int numbytes)

void put (int node, void *src, void *src, int numbytes)
handle put_nb (int node, void *src, void *src, int numbytes)
void put_nbi(int node, void *src, void *src, int numbytes)

• "nb" = non-blocking with explicit handle
• "nbi" = non-blocking with implicit handle
• Also have "value" forms that are register-memory
• Recognize and optimize common sizes with macros
• Extensibility of core API allows easily adding other more complicated

access patterns (scatter/gather, strided, etc)
• Names will all be prefixed by "gasnet_" to prevent naming conflicts

Extended API – Remote memory operations
• API for get/put synchronization:
• Non-blocking ops with explicit handles:

int try_syncnb(handle)
void wait_syncnb(handle)

int try_syncnb_some(handle *, int numhandles)
void wait_syncnb_some(handle *, int numhandles)
int try_syncnb_all(handle *, int numhandles)
void wait_syncnb_all(handle *, int numhandles)

• Non-blocking ops with implicit handles:
int try_syncnbi_gets()
void wait_syncnbi_gets()
int try_syncnbi_puts()
void wait_syncnbi_puts()
int try_syncnbi_all() // gets & puts
void wait_syncnbi_all()

Core API – Active Messages
• Super-Lightweight RPC

– Unordered, reliable delivery
– Matched request/reply serviced by "user"-provided lightweight handlers
– General enough to implement almost any communication pattern

• Request/reply messages
– 3 sizes: short (<=32 bytes),medium (<=512 bytes), long (DMA)

• Very general - provides extensibility
– Available for implementing compiler-specific operations
– scatter-gather or strided memory access, remote allocation, etc.

• Already implemented on a number of interconnects
– MPI, LAPI, UDP/Ethernet, Via, Myrinet, and others

• Started with AM-2 specification
– Remove some unneeded complexities (e.g. multiple endpoint support)
– Add 64-bit support and explicit atomicity control (handler-safe locks)

Core API – Atomicity Support for Active Messages
• Atomicity in traditional Active Messages:

– handlers run atomically wrt. each other & main thread
– handlers never allowed block (e.g. to acquire a lock)
– atomicity achieved by serializing everything (even when not reqd)

• Want to improve concurrency of handlers
• Want to support various handler servicing paradigms while

still providing atomicity
– Interrupt-based or polling-based handlers, NIC-thread polling
– Want to support multi-threaded clients on an SMP
– Want to allow concurrency between handlers on an SMP

• New Mechanism: Handler-Safe Locks
– Special kind of lock that is safe to acquire within a handler

• HSL's include a set of usage constraints on the client and a set of
implementation guarantees which make them safe to acquire in a handler

– Allows client to implement critical sections within handlers

3

Why interrupt-based handlers cause problems
App. Thread

Ti
m

e

lock acquire

lock release

Critical
section

AM Handler

lock acquire

lock release

Async
Interrupt

Analogous problem if app thread makes a synchronous network call
(which may poll for handlers) within the critical section

DEADLOCK

Handler-Safe Locks
• HSL is a basic mutex lock

– imposes some additional usage rules on the client
– allows handlers to safely perform synchronization

• HSL's must always be held for a "bounded" amount of time
– Can't block/spin-wait for a handler result while holding an HSL
– Handlers that acquire them must also release them
– No synchronous network calls allowed while holding
– AM Interrupts disabled to prevent asynchronous handler execution

• Rules prevent deadlocks on HSL's involving multiple
handlers and/or the application code
– Allows interrupt-driven handler execution
– Allows multiple threads to concurrently execute handlers

No-Interrupt Sections
• Problem:

– Interrupt-based AM implementations run handlers asynchronously
wrt. main computation (e.g. from a UNIX signal handler)

– May not be safe if handler needs to call non-signal-safe functions
(e.g. malloc)

• Solution:
– Allow threads to temporarily disable interrupt-based handler

execution: hold_interrupts(), resume_interrupts()
– Wrap any calls to non-signal safe functions in a no-interrupt

section
– Hold & resume can be implemented very efficiently using 2 simple

bits in memory (interruptsEnabled bit, messageArrived bit)

Jaein's part

Performance Benchmarking of
prototype MPI-based GASNet core

(built on pre-existing AM-MPI)

Experiments
• Experimental Platform: IBM SP Seaborg
• Micro-Benchmarks: ping-pong and flood
• Comparison

– blocking get/put, non-blocking get/put (explicit and implicit)
– AMMPI, MPI

Latency

Total
Time

REQ

ACK

Ping-pong
round-trip test

Round-trip Latency =
Total time / iterations

Inv. throughput

Total
Time

REQ

ACK

Inv. throughput = Total time / iterations
BW = msg size * iter / total time

Flood test

Latency

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

by te s

us

get
put
get_nb
put_nb
get_nbi
put_nbi
AMMPI
MPI

(lower is better)

4

Inverse Throughput (network depth = 8)

0

200

400

600

800

1000

1200

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

bytes

us

get_bulk
put_bulk
get_nb_bulk
put_nb_bulk
get_nbi_bulk
put_nbi_bulk
AMMPI
MPI

(lower is better)

Inverse Throughput (network depth = 8)

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256 512 1024 2048 4096

bytes

us

get_bulk
put_bulk
get_nb_bulk
put_nb_bulk
get_nbi_bulk
put_nbi_bulk
AMMPI
MPI

(lower is better)

Bandwidth (network depth = 8)

0

50

100

150

200

250

300

16 32 64 128 256 512 102
4

204
8

409
6

819
2

163
84

327
68

655
36

131
072

bytes

M
B

/s
ec MPI

AMMPI
get_nbi_bulk
put_nbi_bulk
get_nb_bulk
put_nb_bulk
get_bulk
put_bulk

(higher is better)

Results
• Explicit and implicit non-blocking get/put performed equally well
• Latency was good but can be tuned further

– blocking and non-blocking I/O had 7 us overhead over AMMPI
• Bandwidth and throughput were satisfactory

– Non-blocking I/O performed as well as AMMPI.
• Overall performance is dominated by AMMPI implementation
• Expect better GASNet performance on a native AM implementation

242 MB/sec159 MB/sec160 MB/sec113 MB/secBandwidth
(flood: at 128KB)

8 us29 us29 us79 usInv throughput
(flood: at 16bytes)

39 us60 us67 us67 usLatency
(ping-pong round trip)

MPIAMMPINon-blockingBlocking

Conclusions & Future Work
• MPI is not a good match for implementing global-address space

languages
– Semantic mismatch between non-blocking get/put accesses and msg send/recv

• Atomicity for active message handlers
– Handler-safe locks allow handler concurrency & interrupt-based handlers

• Future Work:
– Implement GASNet on other interconnects

• LAPI, GM, Quadrics, Infiniband …
– Tune AMMPI for better performance on specific platforms
– Augment Extended API with other useful functions

• Collective communication (broadcast, reductions)
• More sophisticated memory access ops (scatter/gather)

