
SCI Networking for Shared-Memory Computing in UPC:
Blueprints of the GASNet SCI Conduit

H. Su, B. Gordon, S. Oral, A. George

{su, gordon, oral, george}@hcs.ufl.edu

High-performance Computing and Simulation (HCS) Research Lab, Dept. of Electrical and Computer Engineering,
University of Florida, Gainesville, Florida 32611-6200

Abstract
Unified Parallel C (UPC) is a programming model for
shared-memory parallel computing on shared- and
distributed-memory systems. The Berkeley UPC
software, which operates on top of their Global
Addressing Space Networking (GASNet) communication
system, is a portable, high-performance implementation
of UPC for large-scale clusters. The Scalable Coherent
Interface (SCI), a torus-based system-area network (SAN),
is known for its ability to provide very low latency
transfers as well as its direct support for both
shared-memory and message-passing communications.
High-speed clusters constructed around SCI promise to be
a potent platform for large-scale UPC applications.
This paper introduces the design of the Core API for the
new SCI conduit for GASNet and UPC, which is based on
Active Messages (AM). Latency and bandwidth data
were collected and are compared with raw SCI results
and with other existing GASNet conduits. The outcome
shows that the new GASNet SCI conduit is able to provide
promising performance in support of UPC applications.

Keywords: Scalable Coherent Interface, Global Address

Space Networking, Unified Parallel C, Active Messages.

1 Introduction
Many scientific as well as commercial endeavors rely

on the ability to solve complex problems in a quick and
efficient manner. One of the dominant solutions to this
problem has been the advent of parallel computing. To
supplement the architectural improvements in this area,
parallel programming models have emerged to provide
programmers alternate ways in solving complex and
computationally intensive problems. Such models
include message passing, shared memory, and distributed
shared memory.

While message passing and shared memory are the
two most popular ways to implement parallel programs,
distributed shared memory is quickly gaining momentum.
One of the reasons for this development is the growing
acceptance of Unified Parallel C (UPC) [1-2] and other
models like it. UPC is a parallel extension to the ANSI
C standard that gives programmers the ability to create
parallel programs that can target a variety of parallel
architecture platforms while maintaining a familiar
C-style structure. This approach allows a smaller

learning curve for people with C experience to begin
creating parallel programs and often results in tighter and
more efficient code.

One recent development in UPC is the interest in
providing a means for executing UPC over
commercial-off-the-shelf (COTS) clusters. The
Berkeley UPC runtime system [3], developed by U.C.
Berkeley and LBNL, is a promising tool now available to
support this endeavor. An underlying key to this system
is the Global Addressing Space Networking (GASNet)
communication system [4-5]. GASNet defines a
standard application interface that can be implemented
over a wide variety of standard and high-performance
networks such as Ethernet, InfiniBand, Myrinet, and
Quadrics.

In this study, we present the design of a new GASNet
conduit operating over the Scalable Coherent Interface
(SCI) network [6]. Benchmarks were executed on the
newly developed conduit and compared against the raw
performance of SCI, the GASNet Myrinet conduit, and
GASNet MPI conduit on SCI using Scali’s ScaMPI [7] to
evaluate various strengths and weaknesses.

The next section of this paper briefly describes the
architecture of SCI and GASNet. In Section 3, we discuss
related research. Section 4 describes the design overview
of the GASNet/SCI conduit. Section 5 presents the
performance results and analyses. Finally, Section 6
presents conclusions and directions for future research.

2 Background
In the following subsections we present an overview

of the SCI high-performance network. Also included is a
brief introduction to the GASNet communication system.

2.1 SCI
SCI is an ANSI/ISO/IEEE standard (1596-1992) that

describes a packet-based protocol [8] for system-area
networking. SCI was initially developed as an attempt to
address the problems associated with buses for use with
many processors. It has evolved to become a
high-performance interconnect for SANs and embedded
systems. SCI uses point-to-point links, maintaining low
latency while achieving high data rates between nodes. It
features a shared-memory mentality so that memory on
each node can be addressable by every other node on the
network. SCI uses 64 bits in its addressing. The

most-significant 16 bits are used to specify the node in the
network, and the remaining 48 bits are used for addresses
within each node. With this scheme, the SCI environment
can support up to 64K nodes with 256TB of addressable
space.

SCI offers many advantages for the unique nature of
parallel computing demands. Perhaps the most
significant of these advantages is its low-latency
performance, typically (based on current commercial
products from Dolphin) on the order of single-digit
microseconds for remote-write operations and tens of
microseconds for remote-read operations. Based on the
latest technology, SCI offers a link data rate of 5.3 Gb/s
with topologies including 1D (ring), 2D, or 3D torus.

The Dolphin SISCI API [9] is a standard set of API
calls allowing users to access and control SCI hardware
behavior directly based on a shared-memory paradigm.
To enable inter-node communication, the receiver must set
aside a portion of its physical memory (global memory
region) for use by the SCI network. The sender then
imports the memory region into its virtual address space
and is thus able to read and write the receiver’s memory
region by way of either PIO (shared-memory operation)
or DMA (zero-copy operation) transfer modes. The SCI
hardware automatically converts accesses in SCI-mapped
virtual address space to network transfers.

2.2 GASNet
Global Addressing Space Networking (GASNet),

developed at UCB/LBNL, is a language-independent,
low-level communications layer that provides
network-independent, high-performance communication
primitives aimed at supporting parallel shared-memory
programming languages such as UPC and Titanium, a
parallel dialect of Java. The system is divided into two
layers, the GASNet Core API and the GASNet Extended
API (Figure 1). The Core API is a narrow interface
based on Active Messages (AM) [10] and the
network-specific Firehose memory registration algorithm
[11]. The Extended API is a network-independent
interface that provides medium- and high-level operations
on remote memory and collective operations.

GASNet Extended API

GASNet Core API Direct
Access

Distributed Shared Memory
Parallel Programming Language

Network

Language
Independent

Network
Independent

Figure 1 - GASNet layers overview

The GASNet segment is the location where most of
the GASNet operations target. There are three ways the
segment can be configured, as fast, large, or everything.
Under the fast configuration, the size of the segment may
be limited to provide faster transfers of GASNet
operations. The large configuration makes a large
portion of memory available to the segment. The size
may include all of the physical memory or more. The
everything configuration makes the whole virtual address
space on every node available for GASNet operations.

Currently, GASNet supports execution on UDP, MPI,
Myrinet, Quadrics, InfiniBand and IBM LAPI. GASNet
was first released on 1/29/2003 with the latest release as
of this writing being Version 1.3.

3 Related research
Since our GASNet Core API must provide for AM

over SCI, Ibel’s paper [12] is useful as it discusses several
possible ways to execute AM over SCI. However, his
simple remote-queue implementation poses several
limitations. First, with 1 buffer space for all AM replies,
each node is restricted to having only 1 outstanding AM
request to the whole network at any given time.
Furthermore, the need for the receiver to copy bulk data
(long AM payload) from the 4KB buffer to its appropriate
memory location, and the cost of message polling (O(N),
where N denotes the system size), introduce additional
overhead that significantly impacts system performance.
With applications that exhibit frequent inter-node
communication, system performance is degraded to a
degree that the benefit of parallelization is no longer
observed.

Ibel briefly described a split remote-queue scheme
that uses circular queues of N−k (where k is a constant)
messages (one queue for each node able to hold k
messages) to allow parallel sending and receiving of
messages. Unfortunately, this approach is not
deadlock-free and the overhead for copying bulk data and
message polling still remains.

Additional research that was instrumental to this
work consists of other existing GASNet conduits. The
design documents and source code available on the
GASNet website [4] were used as a guide in the design of
the Core API for the new SCI conduit.

4 Core API design
SCI hardware is designed such that remote writes are

~10 times faster than remote reads. This disparity is due
to the inability to streamline reads through the memory
PCI bridges. As a result, to obtain the best performance,
only remote writes are used in our conduit design, as in
Ibel’s approach. Additionally, due to driver limitations,
only the GASNet fast segment configuration is supported
by the SCI conduit. Future improvements will allow
support of the other configurations.

4.1 Basic communication regions
Instead of only 1 buffer space for both AM requests

and replies as in Ibel’s split-queue scheme, we divide the
buffer (command region) into a request and a reply queue
of equal size making the system deadlock free. Each
request/reply buffer space is set to be the size of the
longest AM header plus the maximum size of a medium
payload. The request and reply are paired so that a node
with an outstanding request to another node is guaranteed
to have space to hold the reply for that particular request.
Each node has a message queue reserved for it on every
other node. This scheme allows each node to locally
manage outgoing messages and guarantee no conflicts
with other nodes (Figure 2).

Control X

Command X-N

Payload X

Local (In use)

Local (free)

Command X-1

Control X

Payload X

Command X-N

Command X-1

... ...

Control
Segments
(N total)

Command
Segments
(N*N total)

Payload
Segments
(N total)

SCI SpaceNode X

Physical
Address

Figure 2a – Conceptual diagram of the segment

exportation mechanism

...

Command 1-X

Control N

Control 1

...

Control N

Command N-X

Command 1-X

...

Control
Segments
(N total)

Command
Segments
(N*N total)

SCI Space

Node X

Virtual
Address

Command N-X

...

Control 1

Figure 2b –Conceptual diagram of the segment

importation mechanism

Similar to Ibel’s approach, a message-ready flag is
used to indicate if a particular message exists in a queue
or not. However, rather than attaching the flag to the
end of the AM message, these flags are separately placed
in an array (control region) that is accessible by all other
nodes. This method provides better data locality when
checking for new messages, as all the message-ready
flags now reside in one contiguous memory region. In
addition, a single global message-exist flag is used to
indicate the existence of any new messages.

Finally, the size of the long AM payload region is
significantly bigger and it corresponds to the range of

remotely accessible memory as specified by the GASNet
fast segment configuration which the user defines, thus
minimizing unnecessary data copying. Since the
importing of regions occupies local virtual address space
equal to the size of the segment, the large payload
segments (payload regions) are not imported at
initialization time so as to improve scalability.
Fortunately, DMA transfer mode allows communication
to take place without having to import the region into
virtual memory space, but with added overhead.

4.2 AM communication
The message sending and handling process is

illustrated in Figure 3. In order to send a message from
a sender node to a receiver node, the sender first prepares
the AM header, which contains information such as the
handler to be called, message type, payload size, etc.
Once prepared, the header is then written to the receiver’s
command region using a PIO transfer. For a medium
AM message, another remote PIO write operation is used
to transfer the medium payload to the same command
region. The same sequence of operations is used for
long AM transfers to handle the unaligned portion of the
long payload (see Section 5.2.2 for further explanation).
Otherwise, the data payload is sent directly to the payload
region via a DMA transfer.

AM Header

Medium AM
Payload

Long AM
Payload

Flags

Control

Command Y-1

Node X

...

Command Y-X

...

Command Y-N

Payload Y

Node Y

Wait for Completion

New Messages
Availiable?

Process all new
messages

Yes No

Check Message Exist Flag

Polling Done

Polling End

Polling
Start

Other processing

Process
reply

message

Memory

AM Reply or ack

Extract
Message

Information

Figure 3 – High-level flowchart for inter-node

communication

Upon completion of these transfers, the sender writes
the two message flags to the receiver’s control segment.
The message-exist flag is used to tell the receiver that
there is at least one new message available and the
message-ready flag indicates that a particular message
buffer contains a message. When the receiver calls the
polling process, it checks the message-exist flag to see if
there are any new messages that need to be handled. If
there are, the receiver scans message-ready flags and
handles the appropriate newly arrived messages. Using

this approach, the cost of an unsuccessful poll is O(1) and
O(N) for a successful poll, leading to amortized costs for
polling of only O(1).

5 Results and analysis
In this section we present the latency and bandwidth

results of the first full design and implementation of our
Core API. These results are compared against Dolphin
SISCI raw performance and two other existing GASNet
conduits, namely the GM conduit for Myrinet and the
MPI conduit, a core only implementation, on SCI using
Scali’s ScaMPI. ScaMPI is a commercial MPI
implementation for SCI, and it is considered the most
efficient communication layer implemented to date for
SCI. This comparison of results is used to evaluate the
performance of our design.

The GASNet system provides a reference-extended
API implementation that is based on Core API functions.
Consequently, a complete and fully functional GASNet
conduit is created with the successful completion of the
Core API. To complete the analysis of our design, we
compared the results of the basic Extended API
operations put and get for our native SCI conduit against
the MPI conduit executing on top of ScaMPI.

5.1 Experimental setup
Here we describe the environment and testing

procedures used in obtaining performance measurements
from each of the software environments.

5.1.1 Testbed
Two sets of machines were used in this study. The

first set consists of 16 server nodes, each with dual
2.4GHz Intel P4 Xeon CPUs with 256KB L2 cache, 1GB
of DDR PC2100 (DDR266) RAM, and a 533MHz system
bus. Each node is equipped with a Dolphin D339 3D
SCI card and uses Linux Red Hat 9.0 with kernel
2.4.20-8smp and gcc version 3.3.2. These SCI nodes are
wired and configured as two 4×2 2D torus networks.
One torus uses the free open-source driver with SISCI
API V2.2 provided by Dolphin, and the other uses the
commercial Scali V4.0 driver with ScaMPI.

Michigan Tech graciously provided access to their
Myrinet 2000E cluster for this work. Their cluster
consists of 16 server nodes, each with dual 2.2GHz Intel
P4 Xeon CPUs with 256KB L2 cache, 2GB of DDR
PC2100 (DDR266) RAM, and a 533MHz system bus. A
16-port Myrinet 2000 switch is used to connect these
nodes. The Myrinet NIC in each node features an
onboard 133MHz LANai 9.0 CPU with 2MB of on-card
memory using GM V1.6.3.

5.1.2 Experiments
Performance results for SCI Raw are obtained using

scipp (PIO benchmark, ping-pong) and dma_bench (DMA
benchmark, one-way), latency and bandwidth benchmarks
provided by Dolphin for the SISCI API. Conduit results
are obtained by executing a slightly modified version of

testam benchmark from the GASNet test suite. The
testam code was changed only to output the bandwidth
measurements for AM long transfers.

To test the latency of small-message put/get
operations in GASNet, we use the testsmall benchmark
from the GASNet test suite. It uses the gasnet_put() and
gasnet_get() functions to send data back and forth
between nodes, obtaining the round-trip latency for these
requests. Bandwidth is measured using the testlarge
benchmark available in the GASNet test suite. It uses
the various bulk-data transfer functions available in the
Extended API to send one-way data between two nodes.

5.2 Core API AM results and analysis
Short, medium, and long AM latency, as well as long

AM bandwidth results, are shown in this section. As
short and medium AM transfers are typically small in size
and do not transfer large amounts of data, bandwidth
numbers for them are not included. Comparison and
analysis of our SCI conduit’s performance versus the SCI
Raw, the MPI/ScaMPI Conduit, and the Myrinet Conduit
are also discussed. Unfortunately, direct comparisons
between our results and those from Ibel’s work cannot be
made due to vastly different hardware/software testbeds.

5.2.1 Short/Medium AM

0

10

20

30

40

50

0 1 2 4 8 16 32 64 128 256 512 1024

Payload Size (Bytes)

L
at

en
cy

 (
us

)

SCI Raw SCI Conduit

MPI/ScaMPI Conduit Myrinet Conduit

0 Bytes Payload = Short

Figure 4 - Short/Medium AM ping-pong latency results

Compared to SCI raw performance, our SCI conduit
adds ~12us of overhead (Figure 4). The main cause is
the overhead added to package and unpackage the AM
header, obtaining free buffer space and system sanity
checks. Our results are comparable to the Myrinet
conduit, but somewhat lags behind the MPI/ScaMPI
conduit. Other possible causes for the overhead and
reason why MPI/ScaMPI has better performance is still
under investigation.

The transmission of medium AM messages can be
performed in two ways. The header and payload can be
copied into one contiguous memory location and then
transmitted in one transfer to the receiver, or instead the
header and payload can be transferred separately to the
receiver (Figure 5). One would expect the first approach
to perform better than the second given that network

communication cost is generally much higher than local
processing cost. However, our testing indicates that
using the 2 network transactions mechanism is slightly
more efficient (Figure 6). One reason may have to do
with the need to perform a memcpy(), which can
sometimes be an expensive operation. Another part of
the reason may be that SCI allows up to 16 outstanding
transactions to be posted at once. Because of this, the
second SCI transaction overhead is partially hidden from
the user by the first transaction (i.e. overlapping
transactions).

AM Header

Medium AM
Payload
Source

Copy

One
contiguous

block

AM Header

Medium AM
Payload

AM Header

Medium AM
Payload

1 network
transfer

AM Header

Medium AM
Payload
Source

AM Header

Medium AM
Payload

2 network
transfers

1 network
transaction
mechanism

2 network
transactions
mechanism

Node X

Node X Node Y

Node Y
Figure 5 –Conceptual diagram of "1 network transaction"

and "2 network transactions" message delivery
mechanisms

0

5

10

15

20

25

30

35

40

0 1 2 4 8 16 32 64 128 256 512 1024

Payload Size (Bytes)

L
at

en
cy

 (
us

)

1 network transaction 2 network transactions

Figure 6 - Performance comparison of "1 network
transaction" and "2 network transactions" message

delivery mechanisms

5.2.2 Long AM
The SISCI API requires any DMA transfer to have

8-byte alignment between the source and the target
segment (both starting address and transfer size).
Sending of unaligned data thus became a problem as
costly dynamic mapping (~200us overhead) and
unmapping of the target segment is needed. To
overcome this shortcoming, the request/reply buffer
region reserved for medium payload is used as a bounce
buffer for the unaligned portion of the long payload,
which is later copied to the appropriate payload address
when handled by the receiver. Furthermore, because of

the high DMA engine setup overhead (~30µs), any long
payloads that are less than 2048 bytes are treated as
unaligned data and written to the command segment using
PIO mode instead. In doing so, our conduit is able to
achieve better performance for small long AM payloads
and suffer lower overhead for unaligned data transfers
(~13us). Future implementations of the SCI conduit
might switch back to use the DMA engine directly, since
Dolphin is currently working on improving their driver to
reduce the mapping overhead, DMA engine start-up
overhead, and the alignment requirement.

Our long AM latency (Figure 7) and bandwidth
results (Figure 8) follow the same growth trend as that of
SCI Raw and are comparable to the Myrinet conduit.
Although MPI/ScaMPI has better performance for smaller
payload size, its maximum bandwidth is about 190 MB/s,
mainly due to the fact that it uses PIO exclusively,
whereas our conduit rises to 213 MB/s with payload size
of 128K.

10

100

1000
0 1 2 4 8

1
6

3
2

6
4

12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

Payload Size (Bytes)

L
at

en
cy

 (
us

)
SCI Raw SCI Conduit

MPI/ScaMPI Conduit Myrinet Conduit

SCI Raw result obtained by double
the result obtained from dma_bench

Figure 7 - Long AM ping-pong latency results

0

50

100

150

200

250

1 2 4 8 16 32 64

1
28

2
56

5
12 1
K

2
K

4
K

8
K

16
K

32
K

64
K

12
8
K

Payload Size (Bytes)

B
an

d
w

id
th

 (
M

B
/s

)

SCI Raw SCI Conduit

MPI/ScaMPI Conduit Myrinet Conduit

Figure 8 - Long AM bandwidth results

5.3 Put/Get
There are two modes of testsmall, transfers to within

and without the main GASNet segment. Since all small
and medium AM transactions take place through buffers,
the results for both modes are the same and only the graph
for transfers within the segment is shown. Figure 9

shows the results of testsmall for our SCI conduit and the
MPI conduit on ScaMPI. Since the Extended API
implementation of these two conduits is based on AM
transactions in their Core APIs, the results correspond
almost exactly to the latency gathered for the small and
medium AM transfers in the Core API.

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1024
Payload Size (Bytes)

L
at

en
cy

 (
us

)

Conduit Put (in) Conduit Get (in)
MPI/ScaMPI Put (in) MPI/ScaMPI Get (in)

Figure 9 - Put/Get latency results

The results for all blocking and non-blocking
functions were the same, so only the results for
gasnet_put_bulk() and gasnet_get_bulk() are shown here.
Similar to testsmall, there are two modes of transfer in
testlarge. Because our Core API currently supports only
the fast segment configuration, it is optimized for
transfers to within the main GASNet segment.
Therefore, only the results for one-way, in-segment
transfers are shown in Figure 10.

0

50

100

150

200

250

16 32 64 12
8

25
6

51
2

1
K

2
K

4
K

8
K

1
6K

3
2K

6
4K

12
8
K

Payload Size (Bytes)

B
an

d
w

id
th

 (
M

B
/s

)

Conduit Put (in) Conduit Get (in)

MPI/ScaMPI Put (in) MPI/ScaMPI Get (in)

Figure 10 - Put/Get bandwidth results

Similar to large AM transfers, the MPI conduit
using ScaMPI achieves slightly better bandwidth for
smaller transfer sizes. However, for transfers of 32KB
and more, our SCI conduit shows better performance.

6 Conclusions
GASNet is an important part of the push to expand

UPC shared-memory computing capabilities to
network-based systems like clusters. The GASNet
conduits available on many networks allow UPC to be
executed on a wide variety of platforms. SCI is a

high-performance network that has many features that can
be used to efficiently execute GASNet and UPC. By
extending GASNet to SCI through the creation of an SCI
conduit, the availability of UPC to parallel programmers
increases. The creation of the GASNet Core API is an
essential step in accomplishing this goal, as a complete
Core API implementation is sufficient for a GASNet
conduit.

The tests conducted show that we have designed and
created a complete and potent GASNet conduit design for
SCI. The performance of our SCI conduit is shown to be
comparable to the Myrinet conduit and slightly behind the
MPI/ScaMPI conduit which uses proprietary SCI driver
and MPI software. This outcome strengthens our belief
that our SCI conduit is a promising extension to the
GASNet system, as the driver used in the creation of the
SCI conduit is free and open-source.

Several ideas are under investigation which will
further improve the performance of our conduit. Care is
needed in balancing the many different aspects of network
performance so that the SCI conduit can fully exploit the
unique features available in the SCI network.
Furthermore, currently the SCI conduit only supports
GASNet global segment sizes up to 2MB, under Linux,
without applying a large physical area patch. This
requirement limits the usage of our conduit to those
clusters whose system administrators are willing to patch
the kernel on each SCI node. This patch requirement is
primarily due to the limitation of the current SISCI driver
where the size of each segment needs to be physically
contiguous and relies on the underlying operating system
to ensure continuity. We are currently working with
Dolphin to resolve this issue and increase the ease of use
of this conduit.

Initial testing at the GASNet put/get level with our
Core API again indicates that our conduit is comparable
to other conduits. We are currently completing the
implementation of an Extended API in order to improve
the performance of our SCI conduit. Once complete,
benchmarks at the UPC application level will be used to
obtain a better assessment of the effectiveness of our SCI
conduit from the communication to the application layer.

Acknowledgements
This work was supported in part by the U.S.

Department of Defense and by equipment support of
Dolphin Interconnect Solutions Inc. Also, we would like
to express our thanks for the helpful suggestions and
cooperation of Dan Bonachea and the UPC group
members at UCB and LBNL, and to Hugo Kohmann and
the support team at Dolphin for technical assistance.

References
1. W. Carlson, J. Draper, D. Culler, K. Yelik, E. Brooks,

K. Warren, “Introduction to UPC and Language
Specification,” May 1999
http://www.gwu.edu/~upc/pubs.html

2. Official Unified Parallel C website

http://www.upc.gwu.edu/
3. Official Berkeley UPC website http://upc.nersc.gov/
4. Official GASNet website

http://www.cs.berkeley.edu/~bonachea/gasnet
5. D. Bonachea, “GASNet Specification Version 1.3,”

April 2003
http://www.cs.berkeley.edu/~bonachea/gasnet/dist/do
cs/gasnet.pdf

6. D. Gustavson and Q. Li, “The Scalable Coherent
Interface (SCI),” IEEE Communications, Vol. 34, No.
8, August 1996, pp. 52-63.

7. Scali, “ScaMPI – Design and Implementation,”
http://www.scali.com/whitepaper/other/scampidesign.
pdf

8. IEEE Service Center, “Scalable Coherent Interface,
ANSI/IEEE Standard 1596-1992,” Piscataway, New
Jersey, 1993.

9. Dolphin Inc., “SISCI API User Guide,” May 2001,
http://www.dolphinics.com/support/documentation.ht
ml

10. A. Mainwaring and E. Culler, “Active Messages:
Organization and Applications Programming
Interface,” Technical Document, 1995.

11. C. Bell and D. Bonachea, “A New DMA Registration
Strategy for Pinning-Based High Performance
Networks,” Workshop on Communication
Architecture for Clusters (CAC'03), 2003.

12. M. Ibel, K.E. Schauser, C. J. Scheiman, and M. Weis,
“Implementing Active Messages and Split-C for SCI
Clusters and Some Architectural Implications,” Sixth
International Workshop on SCI-based
Low-cost/High-performance Computing (SCIzzL-6),
Santa Clara, CA, September 1996.

