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Case	1:	Easy	Distributed	Hash-Table	via	Function	Shipping	and	Futures	
•  Distributed hash-table design is based on function shipping 

•  RPC inserts the key metadata at the target 
•  Once the RPC completes, an attached callback issues a 

one-sided RMA Put (rput) to store the value data 
// C++ global variables correspond to rank-local state 
std::unordered_map<uint64_t, global_ptr<char>> local_map; 
// insert a key-value pair and return a future 
future<> dht_insert(uint64_t key, char *val, size_t sz) { 
 future<global_ptr<char>> fut = 
     rpc(key % rank_n(),             // RPC obtains location for the data 
             [key,sz]() -> global_ptr<char> {    // lambda invoked by RPC 
               global_ptr<char> gptr = new_array<char>(sz);  
               local_map[key] = gptr;              // insert in local map 
               return gptr; 
             }); 
 return fut.then(       // callback executes when RPC completes 
       [val,sz](global_ptr<char> loc) -> future<> {  
           return rput(val, loc, sz); });    // RMA Put the value payload 
} 

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi * 
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•  Benefits: 
•  Use of RPC simplifies distributed data-structure design 

•  Argument passing, remote queue management and 
progress engine are factored out of the application code 

•  Asynchronous execution enables overlap 

Case	2:	Asynchronous	Sparse	Matrix	Solvers	
•  A time consuming operation in multifrontal sparse solvers: 

•  Extend-add: update a distributed sparse matrix, scattering the 
packed data source 

•  Challenge: 
•  This operation has low computational intensity and exhibits irregular 

communication patterns 
•  Solution: 

•  UPC++ function shipping via RPC enables efficient 
communication and asynchrony, increasing overlap and improving 
performance of Extend-add 

•  Impact: 
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x 

speedup over MPI collective and 3.11x over MPI message-passing 
implementations.  The green line in the figure corresponds to the 
fastest of these two variants. 
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Strong scaling comparison of the UPC++ implementation of 
Extend-add using RPC and an MPI variant for the audikw_1 
matrix on NERSC Cori Xeon Phi (using 64 cores/node) * 
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UPC++	at	Lawrence	Berkeley	National	Lab		(upcxx.lbl.gov)	
l   UPC++ is a C++11 PGAS library 

l   Lightweight, asynchronous, one-sided communication (RMA) 
l   Asynchronous remote procedure call (RPC) 
l   Data transfers may be non-contiguous 
l   Futures manage asynchrony, enable communication overlap 
l   Collectives, teams, remote atomic updates 
l   Provides building blocks to construct irregular data structures 

l   Latest software release: March 2021 
l   Runs on systems from laptops to supercomputers 

l   Easy on-ramp and integration 
l   Enables incremental development 
l   Selectively replace performance-critical sections with UPC++ 
l   Interoperable with MPI, OpenMP, CUDA, etc.  

Private address spaces 

Global address space 

Local task queue 
Function shipping across nodes 

Rank 0 Rank 1 Rank 2 Rank 3 

Integration efforts with ExaBiome (WBS 2.2.4.04) 
l  MetaHipMer 1 (MHM1) – a UPC / UPC++ hybrid code 

l  In 2019, the k-mer counting step rewritten from MPI to UPC++ 
l  MetaHipMer 2 (MHM2) – a pure UPC++ code  

l  In 2020, the previous UPC stages of MHM1 rewritten in UPC++ 
l  UPC++’s RPC is a better fit to the problem than previous alternatives 
l  Each rewrite reduced code size by roughly ½ 
l  Comparable genome assembly results 
l  Lower memory requirements and up to 6x better performance 

Integration efforts with ExaGraph (WBS 2.2.6.07) 
l  With PNNL team, have developed two UPC++ versions of a graph 

matching problem from their IPDPS’19 paper 
l  RMA version uses Puts to communicate among processes 
l  RPC version uses asynchronous remote procedure calls to 

execute logic on remote parts of the graph 
l  Initial results on NERSC Cori Haswell (3.6B-edge Friendster): 

l  Both UPC++ versions competitive with (or better than) best MPI 
versions up to at least 4,096 processes 

Integration efforts with NWChemEX (WBS 2.2.1.02) 
l  Ported TAMM code base from Global Arrays/MPI to UPC++ 

l  TAMM offers distributed in-memory data store and compute for 
NWChemEx 

l  Achieved comparable performance to hardened GA code 
(+10-15%) after a few months of work by 1 SDE 

l  Continuing to identify UPC++ enabled optimization opportunities 
l  Multi-threaded remote accumulators via RPC 
l  Finer grain asynchrony and completion control 
 

* For more details see IPDPS’19. https://doi.org/10.25344/S4V88H 
	

•  Three different MPI implementations 
•  Two distinct network hardware types 
•  On four systems the performance of GASNet-EX 

matches or exceeds that of MPI RMA and 
message-passing: 
•  8-byte Put latency 6% to 55% better 
•  8-byte Get latency 5% to 45% better 
•  Better flood bandwidth efficiency, typically 

saturating at ½ or ¼ the transfer size 

For more details see Languages and Compilers for Parallel Computing (LCPC'18). 
https://doi.org/10.25344/S4QP4W  
 

GASNet-EX results from v2018.9.0 
MPI results from Intel MPI Benchmarks v2018.1 
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GASNet-EX	RMA	Performance	versus	MPI	RMA	and	Isend/Irecv	

GASNet-EX	at	Lawrence	Berkeley	National	Lab	(gasnet.lbl.gov)	
•  GASNet-EX: communications middleware to support exascale clients 

•  One-sided communication – Remote Memory Access (RMA) 
•  Active Messages (AMs) - remote procedure call 
•  Implemented over native APIs of all networks of interest to DOE 

•  GASNet-EX is an evolution of GASNet-1 for exascale 
•  Retains GASNet-1’s wide portability (laptops to supercomputers) 
•  Provides backwards compatibility for the dozens of GASNet-1 

clients, including multiple UPC and CAF/Fortran08 compilers 
•  Focus remains on one-sided RMA and Active Messages 
•  Reduces CPU and memory overheads 
•  Improves many-core and multi-threading support 

•  Major enhancements relative to GASNet-1: 
•  “Immediate mode” injection to avoid stalls due to back-pressure 
•  Explicit handling of local completion (source buffer lifetime) 
•  New and revised AM interfaces, including 

•  E.g. “NPAM” to reduce buffer copies between layers 
•  Vector-Index-Strided for non-contiguous point-to-point RMA 
•  Remote Atomics, implemented with NIC offload where available 
•  Subset teams and non-blocking collectives 
•  RMA directly to/from device memory on supported hardware 

•  E.g. GPUs on OLCF’s Summit 

GASNet-EX 

UPC Legion Chapel UPC++ Fortran08 … 

Ethernet InfiniBand libfabric/OFI Cray XC MPI … 

Exascale Scientific Applications 

Support	for	GPUDirect	RDMA	(GDR)	–	UPC++	and	Legion/Realm	Benchmarks	
•  GASNex-EX supports GPUDirect RDMA (GDR) since 2020.11.0 

•  Removes host CPU and memory bottlenecks from 
one-sided transfers to/from GPU memory (see diagram è) 

•  Currently supports Nvidia GPUs + Mellanox InfiniBand 
•  Other accelerators and networks are subject of future work 

•  Preliminary comparisons of UPC++ to MPI-3 RMA in GDR-enabled IBM MPI show UPC++ 
saturating more quickly to the peak (top-right plot) 

•  Realm is the low-level runtime for the Legion Programming System (WBS 2.3.1.08)  
•  Communications services originally implemented over GASNet-1 
•  GASNet-1 backend still works using legacy API support in current GASNet-EX 

•  Realm introduced a new GASNet-EX communications backend (Dec 2020) 
•  Embraces capabilities specific to GASNet-EX 
•  Leverages Immediate, NPAM, and local completion events for AM 
•  Most notable new capability is GDR support 

•  Some performance benefits of using GASNet-EX’s GDR support in Realm: 
•  Large GPU memory xfers: same bandwidth as host memory (bottom-right plot) 
•  Small GPU memory xfers: 2.2x to 3.0x latency improvement 
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