
2.3.1.14

UPC++	and	GASNet:	PGAS	Support	for	Exascale	Apps	and	Runtimes			(WBS	2.3.1.14)	
Paul	H.	Hargrove	(PI)	

With	team	members:	Dan	Bonachea,	Max	Grossman,	Amir	Kamil,	Colin	A.	MacLean,	Daniel	Waters	

© 2021, Lawrence Berkeley National Laboratory

This research was supported in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

	
	
	
	

Case	1:	Easy	Distributed	Hash-Table	via	Function	Shipping	and	Futures	
•  Distributed hash-table design is based on function shipping

•  RPC inserts the key metadata at the target
•  Once the RPC completes, an attached callback issues a

one-sided RMA Put (rput) to store the value data
// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char>> local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
 future<global_ptr<char>> fut =
 rpc(key % rank_n(), // RPC obtains location for the data
 [key,sz]() -> global_ptr<char> { // lambda invoked by RPC
 global_ptr<char> gptr = new_array<char>(sz);
 local_map[key] = gptr; // insert in local map
 return gptr;
 });
 return fut.then(// callback executes when RPC completes
 [val,sz](global_ptr<char> loc) -> future<> {
 return rput(val, loc, sz); }); // RMA Put the value payload
}

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi *

U
P

IS

G
O

O
D

•  Benefits:
•  Use of RPC simplifies distributed data-structure design

•  Argument passing, remote queue management and
progress engine are factored out of the application code

•  Asynchronous execution enables overlap

Case	2:	Asynchronous	Sparse	Matrix	Solvers	
•  A time consuming operation in multifrontal sparse solvers:

•  Extend-add: update a distributed sparse matrix, scattering the
packed data source

•  Challenge:
•  This operation has low computational intensity and exhibits irregular

communication patterns
•  Solution:

•  UPC++ function shipping via RPC enables efficient
communication and asynchrony, increasing overlap and improving
performance of Extend-add

•  Impact:
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x

speedup over MPI collective and 3.11x over MPI message-passing
implementations. The green line in the figure corresponds to the
fastest of these two variants.

 Processes

Ti
m

e
(s

)

Strong scaling comparison of the UPC++ implementation of
Extend-add using RPC and an MPI variant for the audikw_1
matrix on NERSC Cori Xeon Phi (using 64 cores/node) *

D
O

W
N

 IS

G
O

O
D

UPC++	at	Lawrence	Berkeley	National	Lab		(upcxx.lbl.gov)	
l  UPC++ is a C++11 PGAS library

l  Lightweight, asynchronous, one-sided communication (RMA)
l  Asynchronous remote procedure call (RPC)
l  Data transfers may be non-contiguous
l  Futures manage asynchrony, enable communication overlap
l  Collectives, teams, remote atomic updates
l  Provides building blocks to construct irregular data structures

l  Latest software release: March 2021
l  Runs on systems from laptops to supercomputers

l  Easy on-ramp and integration
l  Enables incremental development
l  Selectively replace performance-critical sections with UPC++
l  Interoperable with MPI, OpenMP, CUDA, etc.

Private address spaces

Global address space

Local task queue
Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

Integration efforts with ExaBiome (WBS 2.2.4.04)
l  MetaHipMer 1 (MHM1) – a UPC / UPC++ hybrid code

l  In 2019, the k-mer counting step rewritten from MPI to UPC++
l  MetaHipMer 2 (MHM2) – a pure UPC++ code

l  In 2020, the previous UPC stages of MHM1 rewritten in UPC++
l  UPC++’s RPC is a better fit to the problem than previous alternatives
l  Each rewrite reduced code size by roughly ½
l  Comparable genome assembly results
l  Lower memory requirements and up to 6x better performance

Integration efforts with ExaGraph (WBS 2.2.6.07)
l  With PNNL team, have developed two UPC++ versions of a graph

matching problem from their IPDPS’19 paper
l  RMA version uses Puts to communicate among processes
l  RPC version uses asynchronous remote procedure calls to

execute logic on remote parts of the graph
l  Initial results on NERSC Cori Haswell (3.6B-edge Friendster):

l  Both UPC++ versions competitive with (or better than) best MPI
versions up to at least 4,096 processes

Integration efforts with NWChemEX (WBS 2.2.1.02)
l  Ported TAMM code base from Global Arrays/MPI to UPC++

l  TAMM offers distributed in-memory data store and compute for
NWChemEx

l  Achieved comparable performance to hardened GA code
(+10-15%) after a few months of work by 1 SDE

l  Continuing to identify UPC++ enabled optimization opportunities
l  Multi-threaded remote accumulators via RPC
l  Finer grain asynchrony and completion control

* For more details see IPDPS’19. https://doi.org/10.25344/S4V88H
	

•  Three different MPI implementations
•  Two distinct network hardware types
•  On four systems the performance of GASNet-EX

matches or exceeds that of MPI RMA and
message-passing:
•  8-byte Put latency 6% to 55% better
•  8-byte Get latency 5% to 45% better
•  Better flood bandwidth efficiency, typically

saturating at ½ or ¼ the transfer size

For more details see Languages and Compilers for Parallel Computing (LCPC'18).
https://doi.org/10.25344/S4QP4W

GASNet-EX results from v2018.9.0
MPI results from Intel MPI Benchmarks v2018.1

U
P

IS

G
O

O
D

 0

 5

 10

 15

 20

 25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Summit: IBM POWER9, Dual-Rail EDR InfiniBand, IBM Spectrum MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 2

 4

 6

 8

 10

 12

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Gomez: Haswell-EX, InfiniBand, MVAPICH2

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Cori-II: Xeon Phi, Aries, Cray MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Cori-I: Haswell, Aries, Cray MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Uni-directional Flood Bandwidth (many-at-a-time)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Cori-I Cori-II Summit Gomez

R
M

A
O

pe
ra

tio
n

La
te

nc
y

(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)

D
O

W
N

 IS

G
O

O
D

GASNet-EX	RMA	Performance	versus	MPI	RMA	and	Isend/Irecv	

GASNet-EX	at	Lawrence	Berkeley	National	Lab	(gasnet.lbl.gov)	
•  GASNet-EX: communications middleware to support exascale clients

•  One-sided communication – Remote Memory Access (RMA)
•  Active Messages (AMs) - remote procedure call
•  Implemented over native APIs of all networks of interest to DOE

•  GASNet-EX is an evolution of GASNet-1 for exascale
•  Retains GASNet-1’s wide portability (laptops to supercomputers)
•  Provides backwards compatibility for the dozens of GASNet-1

clients, including multiple UPC and CAF/Fortran08 compilers
•  Focus remains on one-sided RMA and Active Messages
•  Reduces CPU and memory overheads
•  Improves many-core and multi-threading support

•  Major enhancements relative to GASNet-1:
•  “Immediate mode” injection to avoid stalls due to back-pressure
•  Explicit handling of local completion (source buffer lifetime)
•  New and revised AM interfaces, including

•  E.g. “NPAM” to reduce buffer copies between layers
•  Vector-Index-Strided for non-contiguous point-to-point RMA
•  Remote Atomics, implemented with NIC offload where available
•  Subset teams and non-blocking collectives
•  RMA directly to/from device memory on supported hardware

•  E.g. GPUs on OLCF’s Summit

GASNet-EX

UPC Legion Chapel UPC++ Fortran08 …

Ethernet InfiniBand libfabric/OFI Cray XC MPI …

Exascale Scientific Applications

Support	for	GPUDirect	RDMA	(GDR)	–	UPC++	and	Legion/Realm	Benchmarks	
•  GASNex-EX supports GPUDirect RDMA (GDR) since 2020.11.0

•  Removes host CPU and memory bottlenecks from
one-sided transfers to/from GPU memory (see diagram è)

•  Currently supports Nvidia GPUs + Mellanox InfiniBand
•  Other accelerators and networks are subject of future work

•  Preliminary comparisons of UPC++ to MPI-3 RMA in GDR-enabled IBM MPI show UPC++
saturating more quickly to the peak (top-right plot)

•  Realm is the low-level runtime for the Legion Programming System (WBS 2.3.1.08)
•  Communications services originally implemented over GASNet-1
•  GASNet-1 backend still works using legacy API support in current GASNet-EX

•  Realm introduced a new GASNet-EX communications backend (Dec 2020)
•  Embraces capabilities specific to GASNet-EX
•  Leverages Immediate, NPAM, and local completion events for AM
•  Most notable new capability is GDR support

•  Some performance benefits of using GASNet-EX’s GDR support in Realm:
•  Large GPU memory xfers: same bandwidth as host memory (bottom-right plot)
•  Small GPU memory xfers: 2.2x to 3.0x latency improvement

U
P

IS

G
O

O
D

0

2

4

6

8

10

12

14

Host/Host Host/GPU GPU/Host GPU/GPU

B
an
dw
id
th
(G
B
/s
)

Memory Types: Local/Remote

12.0

8.0

9.6

6.9

12.1 12.1 12.3 12.3

Realm over GASNet-1 API
Realm over GASNet-EX API

Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth
GASNet 2020.11.0 release and two Realm implementations

4

16

64

256

1024

4096

16384

16 B 64 B 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Si
ng

le
-ra

il
Fl

oo
d

Ba
nd

w
id

th
 (M

iB
/s

)

Transfer Size

RMA Get Bandwidth (remote GPU to local host memory)
UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit

12.5 GB/s (limiting wire speed)
upcxx::copy (GDR, v2020.11.0)
upcxx::copy (Reference, v2020.10.0)
MPI_Get

PRELIMINARY
RESULTS

U
P

IS

G
O

O
D

