
Firehose: An Algorithm for Distributed
Page Registration on Clusters of SMPs

Christian Bell Rajesh Nishtala
May 2004: CS262B Final Project

Computer Science Division
University of California, Berkeley

{csbell,rajeshn}@cs.berkeley.edu

Keywords: Memory registration, Remote DMA, Global-Address Space Languages, GASNet, PThreads, Firehose, High-
performance networks, Myrinet.

Abstract

This paper proposes to improve a memory registration strategy for Remote DMA operations over pinning-
based networks in the context of Clusters of Multiprocessors (CLUMPS). Although existing approaches focus
primarily on bandwidth as a metric for evaluating the cost of DMA page registration (or pinning), there are
many levels of host synchronization that hide the true cost of registration and prevent efficient use of one-sided
RDMA communications and seriously impacts the cost for small messages. Furthermore, existing approaches
do not tailor their implementations for Multiprocessors that share a single network endpoint, and as such ignore
to exploit the spatial and temporal locality in the remote memory pages referenced by running many SPMD
parallel programs over a single network endpoint. The proposed solution extends the idea of the Firehose
algorithm and proposes a new Firehose API and library for both uniprocessor and multiprocessor variants. The
SMP-aware version of Firehose pursues the same design goals of minimizing host-level synchronization – or
more specifically, allowing operations to complete one-sided in the common case and reverting to rendezvous-
like synchronization between endpoints when operations in the uncommon case. We motivate the need for
special attention for CLUMPS and supplement a complete Firehose-SMP implementation with an evaluation of
its design and some of the initial performance results are promising.

1 Introduction

User-level Remote DMA communication is the preferred approach for delivering high bandwidth and low latency
data transfers in most high performance networking hardware today. Among some of its benefits is the ability to
leverage zero-copy operations, which implies that the Operating System software stack and networking hardware
agree on the protection mechanisms to allow users to read and write directly on the network. Vendors such as Myri-
com and Quadrics [2, 5] have leaned on this technology for years and offer relatively low-cost high performance
network interconnects for loosely coupled Networks of Workstations. Although they differ in the level of integra-
tion of the NIC with the host, vendors are always actively working on moving an increasing amount of functionality
onto the Network Interface. In this regard, support for Remote DMA operation is seen as the fundamental building
block for most network operation enhancements.

Each of these technologies ships with some version of the ubiquitous Memory Passing Interface (MPI), which
many regard as the ultimate standard in High Performance Computing. Recently, MPI’s dominance has been
countered by a new breed of Partitioned Global Address Space (PGAS) languages, who’s development effort was
motivated by the need to provide a richer set of language-level parallel programming constructs. For example,
Unified Parallel C (UPC) promotes the high level of programmability of shared-memory systems while still un-
derscoring the need for performance by giving the user control over data layout. A key difference in terms of the

memory requirements of MPI and PGAS languages is the need to expose the entire virtual memory address space
in the latter, much like shared-memory platforms. Existing technologies in the area of high performance intercon-
nects reveal various implementation efforts and in many cases, limitations as to exposing the entire address space
for RDMA have important performance impacts.

The recently proposed firehose algorithm [1] attempts to address some of these limitations and is designed in
the spirit of GAS languages. Namely, Firehose allows zero-copy one-sided operation in the common case, exposes
the entire virtual memory space and is sensitive to small message sizes. The first version of the algorithm was
implemented as an integral part of GASNet’s GM conduit, in order to target the page-based pinning interface
offered by Myrinet. The latest technologies (such as Infiniband) add to the amount of pinning-based networks
and also increase the possible firehose clients. After giving an overview of firehose in section 3 This paper first
proposes, in section 3.3, an interface and library that can be targeted by various flavors of pinning-based networks,
namely page-based and region-based. The remainder of the section raises some of the issues present in maintaining
a consistent firehose state table in the presence of split-phase multi-threaded accesses and updates and assess the
need for an SMP awareness in firehose. The paper follows with a description of the design and implementation of
firehose SMP in section 4 and presents some initial performance and correctness results in 5.

2 Background

Support for Remote Direct Memory Access (RDMA), available in many high performance Network Interfaces,
allows the NIC to write and read directly to memory without interrupting the host processor. Memory bandwidth
aside, the benefits of this approach for the host processor are clear – the cache is not polluted with the contents of
bulk (possibly useless) data and the host processor can concentrate exclusively on computation and not servicing
of the network. In terms of support for RDMA, there are two facets to the problem. The first involves supporting
cache invalidations between a DMA interface and the host processor, which processor architectures already support
for other legacy DMA devices. The second requires the NIC to handle the virtual-to-physical mapping of memory
pages as well as remain synchronized with the state of the host’s page tables so that pages destined and sourced for
DMA are guaranteed to be present in physical memory. This point separates two classes of network interfaces in
their support for page registration:

• Hardware-assisted. This approach is not unlike a regular paging-based virtual memory system except that
the NIC combines a hardware TLB and tweaks in the kernel’s virtual memory subsystem which allows the
NIC to pin pages, initiate page faults when necessary and track changes in the application’s page table (see
Quadrics [5]). Since this approach poses no restrictions on what memory is made DMA-able, potentially all
of the user’s virtual memory can be made available to remote DMA operations. The downside, however, is
the higher price tag for these NICs and the custom modifications required for every OS the NIC supports.

• Pinning-based. This approach requires the programmer to explicitly set up the regions of memory to be
enabled for DMA operations. This translates into marking the relevant memory pages as non-pageable
(referred to onward as pinned) in main memory. Pinning user-level virtual memory pages instructs the OS
that the underlying physical pages cannot be paged out until the application terminates or explicitly unpins
them. Due to this restriction, the upper bound on the amount of memory that can be pinned at one time
(and therefore made available for remote access) is limited by the size of physical memory (in practice, the
limit is actually somewhat less than physical memory size, depending on the OS and NIC hardware). This
restriction is especially problematic in 64-bit applications with large memory requirements where the total
virtual memory space in use may far exceed the physical memory size (although the actual working set may
be rather small).

Aside from hardware-assisted approaches which can implicitly handle memory registration, existing software
approaches to dynamically and explicitly pinning memory are insufficient. In order to support the more interesting
features leveraged by GAS languages, allowing one-sided remote memory operation and exposing the entire virtual

2

memory address space are two major design goals in developing a pinning-based RDMA strategy. Also, since
message sizes in languages such as UPC tend to be much smaller than in MPI, providing low latency by way
of remote RDMA is also desirable. Existing approaches to dealing with memory registration are summarized in
table 1. Aside from Firehose, none of the software approaches provide zero-copy one-sided operation over the Full
VM, and none of them have tuned their implementations for CLUMPS.

Strategy Zerocopy OnesidedFull VM SMP aware Notes
Hardware-assisted

√ √ √
N/A Hardware complexity and price, Kernel modifications

Pin Everything
√ √

Limited memory, May require a custom memory allocator

Bounce Buffers
√ Two-sided, Local copy costs (CPU consumption), Messag-

ing overhead (metadata and handshaking protocol)
Rendezvous

√ √
Two-sided, Registration paid on every operation

Firehose
√ √ √

Zero-copy, One-sided (common case), Full memory space
accessible, Only handshaking is synchronous, Registration
costs amortized. Messaging overhead (metadata and hand-
shaking protocol) on firehose miss (uncommon case)

Firehose SMP
√ √ √ √ The same as non-SMP firehose, but accepts and satisfies

pinning requirements for multi-threaded clients with split-
phase accesses

Table 1: Summary of available DMA registration strategies

Previous work with pinning-based DMA registration has involved optimizing performance of remote memory
operations using strategies adapted to the underlying network hardware. These are formulated according to the
method for posting communication buffers, how regions of memory are enabled for DMA, flow control and low-
level network layer overhead. It has been shown that there is merit in considering various approaches to optimizing
remote memory operations on pinning-based networks. In particular, [4] proposes two ways to deal with registration
as a required component for remote memory operations: either by pinning/unpinning memory locations as part
of each data transfer or by streaming data through preallocated, registered memory buffers. Depending on the
underlying network parameters, one or the other is shown to provide better bandwidth. Some firehose performance
numbers are shown at the end of section 3, after a description of the algorithm.

Clusters of SMPs have the particularity of sharing a single network endpoint, the node, and have the potential to
benefit from a hybrid of sharing local low-latency memory with a high bandwidth network interconnect. Possible
execution models on a each SMP nodes be can either pthread-based or process-based. The former benefits from a
boost in performance for read-only portions of code and data shared between pthreads and sharing large amounts
of memory between threads is implied as they live in the same VM process. In the process-based model, each
processor must have its own virtualized context within the network endpoint and large amounts of SysV shared
memory is not well supported across platforms. However, processes allow users to link with non thread-safe
scientific computing libraries without trouble, which is not possible using threads. The debate on threads versus
processes is the subject of further research as there are many other pros and cons for choosing one or the other in
a High Performance Computing environment. This paper believes that pthreads is a valid execution model on a
CLUMPs and examines the requirements of providing a general pinning-based strategy. Since target applications
are typically SPMD parallel applications, there is reason to believe that there is an important amount of reuse in
the particular remote pages that are referenced between parallel computation threads connected to a single network
endpoint.

The previous implementation of the Firehose algorithm paid particular attention to low latency minimized the
time spent querying the firehose table, and provided correctness and performance for split-phase local and remote
accesses to the table. However, in the presence of multi-threaded split-phase accesses, many of the assumptions
about the consistency of the table must be reexamined. The problem is much like providing a fully-reentrant Virtual
Memory Manager (VMM) where hardware operations on the processor page tablecannotbe carried out atomically.
Although this comparison bears on no practical system, the point is the VMM would have to deal with processes
(or clients) wishing to reference pages which are in inconsistent states – pages can be committed in which case they

3

are in memory or paged out to disk, or they can be in a visible yet inconsistent state during which they are neither
in memory or on disk. For this latter case, the VMM would have to ensure correctness in the way these types of
pages are handled by its clients.

3 Firehose Algorithm

3.1 Algorithm Description

The Firehose algorithm starts by determining the largest amount of application memory that can be pinned. This
constitutes the upper bound on the total number of physical pages that can be simultaneously pinned and is generally
a function of the size of physical memory. In order to prevent the application from swapping on its memory
references to non-shared memory and respect the memory requirements of other running processes and the kernel,
this value is limited to some reasonable (tunable) fraction of physical memory.

If this amount corresponds to a total ofM bytes usingP byte pages, then a total ofM/P pages can be pinned
at any time during execution. Since a node must support incoming remote memory operations from any other node
in a parallel job, the available space can be evenly divided andf = b M

P∗(nodes−1)c physical pages can be guaranteed
to each remote node. A firehose is a conceptual handle to a remote page and each node ownsf of these firehoses
to every other node. A node has total control over the fixed number of firehoses it owns, and is free to use any or
all of them to establish mappings to remote pages (pinning those remote pages) in order to satisfy pending remote
memory operations.

Once a node has properly situated one of its firehoses, mapping it to a region in remote virtual memory (via
a round-trip synchronization message), the remote node guarantees that virtual page will remain pinned for the
duration of the mapping. The requesting node can now freely “pour” data through the hose to or from that region
of remote shared memory, in the form of one-sided remote DMA puts and gets. A firehose can be efficiently reused
for multiple subsequent operations to the given region, exploiting the temporal and spatial locality of application
memory references to amortize setup costs over many operations. As such, the Firehose algorithm is a distributed
strategy for managing pinned memory. Figure 1 portrays a typical runtime snapshot of how two nodes use their
firehoses to map selected remote pages on one node.

Node B

Firehoses to B

B Memory Space

...
..

..
...

Firehoses to B

Node A Node C

2

refcount = 0

refcount = 2
refcount = 1

refcount = 2

refcount = 1

refcount = 1
refcount = 2

refcount = 0

refcount = 0

1
2
3
4
5
6

7
8

7
8

refcount = 0
1

6
5
4
3

refcount = 1

Figure 1: Runtime snapshot of two nodes (A
and C) mapping their firehoses to an-
other node (B)

lookup and
increment
refcounts

decrement
reference

counts

"Hit"

"Miss"

AM Request
list pages to pin

AM Reply
pages pinned

Client A

Pin
pages**

Firehose B

Done

Client B

NETWORK

NIC B

NIC A

Firehose A

Initiate
RDMA
Put/Get

firehose_

remote_pin()

Complete
RDMA
Put/Get

firehose_

release()

Host B

Host A

Request
RDMA
Put/Get

** Pages are pinned only if necessary

One-side
RDMA Put/Get

Complete
Request

Figure 2: Firehose remote pinning flow

Implementation of the Firehose algorithm requires a thin control layer (such as Active Messages [6]) for the
handshaking that takes place when a host wishes to move a firehose1.

1Active Messages are an integral part of the GASNet API [3]

4

A remote memory request to pin memory is shown in figure 2. The steps followed are typical for a client that
pins memory in order to issue a one-sided put (or get) operation.

1. The remote request on host A consults a table of firehoses for existing mappings to the remote node. If the
destination memory is fully mapped by firehoses (i.e. a firehose “hit”), the put can be completed entirely
with one-sided remote DMA (notice how the DMA only reaches the NIC on node B and node CPU B); if
not, the second step follows. In either case, reference counts are incremented to declare on intention on the
remote pages.

2. For a miss, a firehose move active message request is sent, which communicates a reassignment of firehoses.
In general this involves moving of firehoses (by updating state metadata) - releasing old mappings which are
not being used in favor of new ones.

3. Upon receiving a firehose move request, the virtual pages being released (if any) are unpinned and the new
set of pages is pinned. A reply confirming the pinned destination memory is sent.

4. The one-sided DMA put or get operation may be sent (again, the operation is truly one sided).

5. Upon completion, a client typically releases its intentions on remote pages, which decrements the associated
firehose reference counts and helps Firehose track which firehoses are actively in use on a remote node.

If the contents of figure 2 is considered without the darker circles in the firehose A layer of the diagram, firehose
is essentially a rendezvous algorithm. This has been stated before and also constitutes the “miss” path taken by
a request that cannot be fully satisfied by existing remote node firehose mappings. The above series of events
represents an unpolished version of the algorithm. There are many potential optimizations and implementation
details in dealing with firehoses, both on the requesting and receiving node:

• Each node associates a reference count with every locally-pinned page to track usage. While the reference
count is greater than zero, this page is not a candidate for unpinning because it is currently in-use by one
or more incoming firehoses or locally-initiated operations. While the page is pinned, subsequent remote
requests to attach a firehose to this page or locally-initiated operations needing this page merely increment
the reference count and incur no registration overhead (this situation is actually quite likely, especially in
collective operations such as broadcast or reduce). The local node does not need to explicitly track which
remote nodes have mapped a firehose to a given local page, because all incoming firehoses are entirely
controlled by the remote node, and therefore we rely on those nodes to cache their active mappings;

• Firehose supports lazy deregistration using the page-based reference count. By allowing a configurable
number of 0-refcount pages to remain pinned in memory, much of the burden of unpinning and re-pinning
is sidestepped. Although this may lead to increased physical memory consumption, it has the potential to
greatly reduce pinning overhead as a page lazily kept pinned may be the target for subsequent firehose moves
or local operations. Networks with a high registration cost should be configured permissively with the lazy
unpinning parameter;

• A victim FIFO queue tracks pinned pages with zero reference counts. Victim pages are evicted when firehose
move requests arrive for pages not currently pinned or when we’ve reached the configurable limit of physical
pages in use for pinning;

• A reference count is also tied to each firehose. The count is incremented when an local operation is initiated
through the firehose and decremented once the operation completes. This count prevents race conditions
between concurrent or overlapping operations that need to establish new firehose mappings.

Table 2 summarizes the data structures used to implement the Firehose algorithm with all these optimizations.
In order to be adaptive to various networks and memory configurations, the Firehose algorithm has the following

tunable parameters:

5

Data Structure Description

Local Page Table

• Table keyed on page virtual address, with one entry for each currently pinned page
• Each entry contains a page reference count and pointers for the page Victim FIFO

(doubly-linked list)
• Reference count reflects locally-initiated RDMA operations in-progress for the pages

of this page (e.g. source of a locally-initiated put) and the number of remote firehoses
mapped to the page

• Table can be implemented as a simple array on 32-bit platforms

Firehose Table

• Hash table keyed on tuple of remote node and page virtual address with one entry per
attached firehose

• Each entry contains a reference count, a reverse mapping to the tuple and a pointer for
the Firehose Victim FIFO (singly-linked list)

• Reference count reflects the number of locally-initiated operations in-progress which
touch this remote page and are therefore using the firehose

Table 2: Primary data structures in Firehose implementation

1. Maximum amount of physical memory used for remote firehoses (M)
This parameter limits the amount of memory the algorithm guarantees to remote nodes as pinnable at appli-
cation startup (M). This amount of memory is consumed if and only if every remote node uses up all of its
firehoses to a given node. It is likely that the upper bound for this value is limited by the network or other
operating system level requirements.

2. Maximum size of page victim FIFO queue (MAXVICTIM)
This parameter has been explained previously for its benefits in minimizing the registration overhead for
networks where either the pin or unpin operations are expensive. When a local page’s reference count
reaches 0, it is added to the head of the victim FIFO queue - when the queue length exceeds this configurable
parameter, pages are removed from the tail of the queue and unpinned.

The total physical memory usage of Firehose (i.e. pinned memory managed by the algorithm) never exceeds
the upper bound ofM+MAXVICTIM (so the sum should be restricted to be some reasonable fraction of the physical
memory size).M is the maximum amount of memory that can be pinned at any time as a result of remote firehose
requests, and the victim FIFO can additionally keep up toMAXVICTIM pages which aren’t committed to a remote
firehose (to reduce the cost of repinning them later, benefiting from temporal locality). Local pin operations (i.e.
source of a put or destination of a get for pages not already pinned) can be satisfied by stealing some pages off
the victim FIFO (or simply pinning new pages and later returning them to the victim FIFO if it’s below the length
limit). In any case, the local node is guaranteed at leastMAXVICTIM space for local pin operations to unpinned
pages, and the algorithm will still never exceed theM+MAXVICTIM hard limit (although it’s expected to rarely
reach this limit in practice).

3.2 Comparison with other DMA pinning strategies

The firehose approach for pinning memory was previously compared to other DMA registration strategies in ta-
ble 1. The performance that firehose can attain in terms of bandwidth is shown in figure 3, where 64Kb randomly
distributed “put” operations are sent from two nodes as part of an increasing target memory space2. Until the
active working set reachesM, firehose provides a 100% hit rate and “put” operations can complete without any
handshaking and at full network potential. As means for comparison, two versions of the rendezvous protocol are

2Performance results presented in this paper were obtained on an 80-node Myrinet 2000 Cluster, with dual Pentium III 866 Mhz/1GB
RAM nodes running GM 2.0.11 and the latest CVS GASNet snapshot

6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700

B
an

dw
id

th
 (

M
B

/s
)

Working Set Memory Size (MB)

M=400MB
Firehose

Rendezvous (no unpin)
Rendezvous (with unpin)

Figure 3: 64KB put bandwidth over increasing working set memory size (M = 400MB andMAXVICTIM = 50MB)

also graphed – awith unpinversion where each page pinned for DMA is subsequently unpinned an ano unpin
version. When unpinning as part of rendezvous, the dominating factor are the 6000us required to service an unpin
request. Theno unpinversion is also included as many other high performance communications software deter-
mine that leaving memory pinned is a reasonable policy, which is obviously wrong when the amount of physical
memory referenced over the lifetime of the program exceeds physical memory. Firehose excels in that the physical
memory limitation is applies only to the active working set of pages and not all the pages touched during the entire
run of the application. Theno unpinversion remains competitive with firehose until it maxes out on the available
physical memory and crashes at M = 400MB. The reason rendezvous withno unpincan otherwise trail closely
behind firehose because the remote node is fully attentive to the network and can also benefit from the overlap
between bulk communication and pin request synchronization messages. The graph also shows that firehose de-
grades gracefully as the amount of reference memory pages passesM, thenM+MAXVICTIM and eventually meets
the rendezvouswith unpincurve.

3.3 Firehose API

In order to simplify the porting effort of the firehose algorithm to the many flavors of pinning-based networking
hardware, we factored out our initial implementation on Myrinet/GM into a full-fledged library. In investigating
the requirements for a such an API, we discerned two types of pinning-based networks:

1. Region-based. The interface provided through the NIC’s software and firmware can pin memory over re-
gions of memory, which is a convenient way to associate a name to a given pinned memory region. Subse-
quent pinning/unpinning operations can simply use this name to enforce resource limits and even optimize
for coalescing contiguous regions to create a new name. More importantly for the purpose of the research
presented in this paper, region-based pinning does not suffer from as much resource contention as page-based
pinning since the granule is a region and not an aggregate set of pages. The design and implementation of
region-based pinning was carried out in another project parallel to this one and is the subject for different
discussion.

7

2. Page-based. The underlying NIC’s software interface does not provide any type of naming scheme for
operations issued on regions – pinning operations apply exclusively to a set of pages. The side-effect of
having anonymous pages as the granule for pinning and unpinning operations leads to higher contention, a
condition that must be dealt with by firehose.

The full API exports enough functionality in order to make sure that firehose requests to pin local and remote
memory are entirely handled by the firehose library itself. Clients can issue local and remote pin operations through
distinct interfaces and each of these operations can be carried out synchronously by returning to the caller once
completed or asynchronously by way of a callback provided by the client. Also provided aretry versions of both
local and remote pin calls, which allow non-binding requests in the case of a miss – hits however, will commit to the
firehose table. This allows clients to be versatile in their use of firehose, such as issuing a one-sided operation if the
remote pages happen to be pinned or resorting to a client-specific network out-of-band communication mechanism
that doesn’t require the page to be pinned.

Firehose, however, expects the client to provide active message-like functionality, such that requests and replies
issued from firehose can be completed using the client’s high performance network support. Since current clients
are conduits part of the GASNet communications library, they already provide active message functionality as part
of GASNet. Conversely, firehose clients must export the network specific call to issue the actual low-level library
call to pin and unpin local regions of memory (in many cases, this call will be a wrapper around the NIC-specific
software interface for registering memory regions).

Also, some other miscellaneous features have been added to the API. As part of the initialization function,
clients can pass a list of regions that they have guaranteed to be pinned prior to firehose initialization. For example,
some clients may wish to pin a portion of the program stack knowing that many one sided-operations will be issued
from stack temporaries. The most important library calls are summarized in figure 3.3.

• firehose init(max pinnable memory,prepinned regions,...)
At initialization, the client provides firehose with an upper bound on the amount of physical memory
that can be pinned and can optionally pass regions that have been prepinned (such as the program
stack).

• firehose local pin(addr,len,...)
Pins a local region of memory and returns a descriptor of the region to the client.

• firehose try local pin(addr,len,...)
Immediate local pin operation, returns a non-NULL region descriptor if the region covered is entirely
pinned. A successful operation always increments associated reference counts.

• firehose partial local pin(addr,len,...)
Returns the largest segment already pinned in the specified region.

• firehose remote pin(node,addr,len,flags,callback,...)
Returns (synchronously or asynchronously) when the remote region is pinned, with optional flags
such as enabling an optional callback at the target once the pin operation is completed.

• firehose try remote pin(node,addr,len,...)
Immediate remote pin operation, returns non-NULL region descriptor if the remote region covered
is entirely pinned. A successful operation always increments associated reference counts.

• firehose partial remote pin(addr,len,...)
Returns the largest segment already pinned in the specified region.

• firehose release(...)
Allows firehose to release a previous local or remote request.

Figure 4: Some of the Firehose functionality available through the Firehose API

8

3.4 Maintaining Firehose Table Consistency

In a multithreaded environment, the number of firehose table users increases as the number of threads that are
spawned, typically the number of host processors in a HPC environment. Firehose resources such asf and
M+MAXVICTIM constitute a fixed set of resources allocated at each network endpoint (or node, for simplicity).
In essence, participating threads must compete for this set of resources for every request made through the firehose
API. Constraining firehose clients to remain within these parameters is a fundamental requirement of the algorithm
– it is not a side-effect of being SMP aware. Actually, these parameters impose a limit on the amount and size of
RDMA operations that can concurrently be put in flight, and as such require clients to poll the network to respect
the firehose limits. Polling guarantees both that the limits on local pages and remote firehoses are respected by
running active message handlers to encourage previously issued operations to complete.

Overall Requirements.Accesses to the firehose table require that the table return consistent value, namely that
pages that are marked as pinned really are pinned and that misses in the table truly represent unpinned pages – both
for local and remote pages. In the simplified firehose flow diagram forfirehose remote request() shown
in figure 2, a node accesses and updates the firehose table in both local instances when it satisfies a locally initiated
remote request as well as in remote instances, when it satisfies a remotely initiated request in the context of an
active message handler. Local and remote accesses to the table differ in that local accesses are fully synchronous
while accesses as part of AM handler context are asynchronous. Both types of accesses for remote requests are
explained in turn.

During a local access to the table, a client-initiated request assesses the pinned state of a set of remote pages and
determines if the request can be classified as a full hit, or if it will miss. In the case of a hit (including a hit on a page
in the remote FIFO), firehose will ensure that the referenced set of pages remain pinned until the client explicitly
releases the pages (throughfirehose release()) by incrementing a reference count for each remote page. If
the request misses, the referenced pages can only be marked as pinned when the pin operation has actually com-
pleted. However, in accordance to our design goals of reducing the amount of pinning synchronization messages,
we’ve introduced aPENDING state which allows subsequent requests that happen to reference exclusively pages
that are known to be pending to simply defer a local callback instead of sending an additional active message. The
second access to the table happens once the RDMA has completed and the client callsfirehose release() .
In this case, the reference counts associated to pages to be released are decremented and 0-refcounts are moved
into the remote per-node FIFO.

Accesses to the table as part of a remote request is only executed from within an AM handler. Particular AM
semantics specify that handlers cannot poll, block or spin-poll for an unbounded amount of time [6]. In order to
allow table updates (and any accompanying pin/unpin operations) to be completed from AM handler context, all
accesses to the table must be protected by locking the table for a deterministic amount of time. Since client RDMA
operations are typically split phase in their initiation and completion, the table consistency must be guaranteed
throughout each split-phase table access (whether the access be from AM handler context or client initiated).

Steady State Requirements.At steady state, firehose state tables resemble figure 1, where all of the allotedf
firehoses are mapped to remote pages. Future requests will have to move an equal amount of stale firehoses as the
request requires in new firehoses. As the number of RDMA requests (and/or the size of these requests) increase,
the number of requests that can be sent becomes proportional to the speed at which stale mappings are recovered
and eventually used as replacement firehoses. From a single client request’s point of view, recovering replacement
firehoses to satisfy thef requirement entails polling the network in order to run the completion handlers of previ-
ously issued remote requests. This polling is precisely the focus of the difficulties in dealing with more than one
firehose client per single firehose state table as available resources must be correctly and fairly partitioned.

9

4 SMP-aware Firehose

The design of an SMP-aware firehose algorithm necessitates a reevaluation of the many assumptions made in
the original non-SMP design. Since accesses and updates to the firehose table initiated through the firehose API
originate from more than a single client thread, firehose polling at steady state must be modified to provide two
major goals:

• Correctness. The implementation must allow a consistent view of the local and firehose tables throughout all
the possible states of a firehose request. This requirement applies to table accesses initiated from competing
client threads as well as from within active message handlers.

• Fairness. Competing threads should be provided with a mechanism that allows each individual thread to
make forward progress in both its requests for local and remote pages to be pinned.

As explained in section 3.4, interesting conditions for both SMP and non-SMP firehose clients arise at steady
state, whenfirehose remote request() must poll for replacement firehoses. Two types of resources must
be respected with firehose:

1. Per-node firehosesf . Each node can map up tof firehoses to each other node, where a single firehose
is equal to a memory page mapping. Clients request an amount in firehoses equivalent to the size of the
RDMA operation to be initiated at the target remote memory window. According to the sizes and amount
of the RDMA operations being concurrently initiated by competing client threads, only a fraction of thesef
firehoses are available. In fact, client threads can livelock when all availablef end up being distributed among
competing threads without any client RDMA operation being satisfied in its individual need for firehoses.

2. M+MAXVICTIM local pages. Each node has a hard limit ofM+MAXVICTIM local pages being pinned, as
established by the physical memory limitations of the underlying system. As it is the case forf , threads also
compete for this local resource and can lead to livelock.

For example, a problem case can be envisioned forfirehose remote request() when, say,f = 10 and
two client threads request that 8 new firehoses be mapped. One thread could obtain the first available 5 firehoses
from the pool of unused firehoses while the second obtains the next 5 by recovering firehoses through polling of
recently completed operations. Although most of this paper is focused mostly on the SMP-awareness of remote
requests, local pin requests are also submitted to resource limitations that require special attention. Consider a case
where threads concurrently pin large amounts of local memory as per thefirehose local request() client
request. In order to remain within theM+MAXVICTIM hard limit, threads poll for replacement local firehoses and
can lead to deadlock if none of the thread requests are able to make progress.

4.1 Firehose SMP Design

The existing approach for satisfying a remote request is simple – separate the pinned pages from the unpinned
pages and poll until an equal amount of replacement firehoses can be used to substitute the set of pages to be
pinned. If there aren’t enough available replacements in the FIFO, the calling thread polls the network until enough
replacements can be recovered. For reasons explained above, livelock may occur when competing threads unfor-
tunately split the amount of available replacement firehoses, which eventually leads to deadlock when there are no
replacement firehoses to be obtained. The mechanism proposed resolves deadlock in an optimistically concurrent
manner – competing threads poll for a specified amount of iterations before declaring deadlock. In all instances
of the protocol described below for acquire remote firehoses, deadlock avoidance is applied on a per-node basis –
threads compete only if they concurrently target the same node.

This approach can be contrasted to a purely pessimistic approach, one where progress for recovering replace-
ment firehoses would be serialized such that at most a single thread is polling at one time. While concurrent threads

10

issuing requests large enough to be a significant fraction off constitutes the case that leads to serialization, we ex-
pect most requests to be reasonable in the ratio of requested:available firehoses. Another design opportunity could
have been based on allowing threads to issue requests in fragments, such that a full remote pin request is satisfied
by a series of smaller pin requests that could be issued as soon as replacement firehoses would be available. This
opportunity does not warrant further research as it seriously impacts the throughput of client requests and puts a
damper on our goals of keeping two-sided host synchronizations at a minimum.

my_da = 0; /* Deadlock avoidance counter */
while (my_da < DA_LIMIT)
{

my_da++; /* increment DA bit */

if (fh_all_da[node]) /* Someone else won the deadlock avoidance.
fhsmp_Rollback(...); * Return what we got from the fifo and remove

* new entries we created */

UNLOCK_TABLE; /* Leave the table in a consistent state */
AM_Poll();
LOCK_TABLE;
avail = (f - f_used[node]) + fifo[node];

if (avail == 0)
continue;

/* If new replacements, reap them and mark them as PENDING_UNCOMMITTED */
last_addr =

fhsmp_PinWithLogAgain(avail,last_addr,...);

if (last_addr == end_addr) /* Commit. Each new entry changes from
fhsmp_Commit(...); * PENDING to PENDING_UNCOMMITTED, and

* send the Active Message Pin request */
}
/* At this point we proceed knowing we will eventually make progress */

Figure 5: Deadlock avoidance protocol for remote Firehose requests

Remote Client Requests.Figure 5 shows a simplified version of the work to be done before declaring dead-
lock. A given thread will try to recover firehoses for up toDA LIMIT attempts and declares deadlock if another
thread hasn’t done so. The approach is optimistic in the common case, which implies that a given thread should
be able to reap enough replacement firehoses to satisfy its request without declaring deadlock. Until any thread
has posted the deadlock avoidance bitda , all threads try to make progress with the replacement firehoses they
can recover and set any new firehose asPENDING UNCOMMITTED. The introduction of this new firehose state
was required for the SMP-aware code as threads must poll without knowing if the progress they have made so far
in acquiring replacement and creating new firehoses will be able to commit. After each poll to service the active
message queue, a thread checks to see if another thread has posted theda bit and aborts it’s request if so. Aborting
is similar to a rollback-like process, where all the replacement firehoses are returned to the FIFO and all the newly
createdPENDING UNCOMMITTED firehoses are destroyed. Following a rollback, a thread suspends itself and waits
for a condition variable corresponding to a “no deadlock” condition to be posted by the winning thread at which
time the entire operation is restarted.

The proposed approach to deadlock avoidance provides both of the characteristics required in SMP-aware
firehose. Correctness is handled individually by each thread by not exceeding any of the per-node firehoses and
the newly introducedPENDING UNCOMMITTED state is handled correctly in various areas of the firehose code.
Fairness is provided in theory by allowing each thread to make an equal amount of attempts before deadlock
(experimental fairness is reported in section 5).

Given that common case operation should not lead to deadlock, the above deadlock avoidance protocol should
only be entered during times where deadlock is possible. If it can be determined early in the request that there are
enough replacement or unused firehoses to satisfy the operation, an easier path can be taken since we are guaranteed
to commit. This “easy path” is shown in the flow diagram of figure 6, where a process called Estimate Remote

11

Request analyzes the client request to see if it can be satisfied entirely without polling – either the request is a
perfect hit or a a miss can find enough replacements in what’s currently available.

Figure 6: Flow diagram for Firehose’s optimistic deadlock avoidance protocol

Local Client Requests.As is the case for remote requests issued throughfirehose remote request() ,
firehose local request() requests implement a similar a similar but simpler version of the deadlock avoid-
ance protocol. Although polling is also required to make progress on previously issued local pin requests and
eventually recover unused page mappings, there is no remote messaging involved in pinning local pages. However,
clients are equally susceptible to hit problem cases in the presence of a large number of requests. For example,
clients that wish to issue manyget operations in that follow an irregular access pattern will cause an increasing
number of local requests to miss in the firehose table and as such will increase the need for replacement firehoses.
The local deadlock avoidance protocol is similar to the remote one, except that condition variables are used more
aggressively to minimize the latency between threads that have suspended after rolling back and threads that have
won theDA race and can complete their requests.

There are many other subtleties that are overlooked in the simplified pseudocode of figure 5 and omitted from
the presented design issues for local pin requests, but these are extraneous to the core discussion and are summarized
in table 3.

5 Results

This section presents results obtained with the SMP version of page-based firehose implemented for this paper,
which composes 1400 of the 6500 lines of code for the full firehose library (regrouping both page and region
based firehose implementations). Firehose’s SMP-awareness thus constitutes an important fraction of the library
and the results in this section attempt to validate both the correctness and fairness of Firehose-SMP. The code
is not as mature as the non SMP-aware firehose version and has not been tuned yet. Since the primary goal is
to provide correctness and fairness, something the previous code could not handle, tuning and benchmarking the
firehose SMP implementation is slated as future work. Before reporting any of the numbers below, we testing our
implementation against some applications and kernels part of the UPC benchmark to verify overall correctness and
have generated synthetic deadlock-prone communication traces to make sure that every code path firehose SMP
deadlock avoidance and recovery is functional.

In order to validate our claim that there is merit in sharing the firehose table amongst more than one computation
thread, we ran the GUPS UPC application benchmark, which is really meant to stress and measure the performance

12

Component Problem Solution

Deadlock Avoidance
Competing threads can hit on a firehose that
was used as a replacement before polling

After each poll, assert that all replacement fire-
hoses were untouched and rollback if not

Estimating Remote Re-
quests

Hitting on aPENDING UNCOMMITTED fire-
hose during estimation would not create a
reliable estimation of required resources

If the thread won theDA, poll to allow losing
threads to remove theirPENDING UNCOMMITTED

firehoses. If not, increment the localDA count and
rollback.

Estimating Local Re-
quest

Hitting on a PENDING local page cannot
count for a hit

The local pin is handled in two phases, and the
PENDING status is cleared only after the page is
pinned. All local requests that hit aPENDINGpage
must rollback

AM Handler Pinning
Requests to pin local memory hit aPEND-
ING page and AM handlers can’t poll or roll-
back

Create a special queue for these requests and drain
it after every pin operation

Firehose replacement
Before a node reaches steady-state, no fire-
hoses are mapped and available for replace-
ment

Firehose keeps a count associated to the number
of firehoses used and can allow a replacement to
be satisfied by an unused mapping (new firehose
needs to be moved).

Table 3: Summary of some of the corner cases that appear in maintaining consistency throughout multi-threaded split-phase
firehose table accesses

GUPS Benchmark (4 UPC Threads)

0

10000

20000

30000

40000

50000

60000

2 4 8 16 32 64 128 256

Table size (Megabytes)

F
ire

ho
se

 M
is

se
s

(M
ov

es
)

1 Process per node

2 Pthreads per node

Figure 7: UPC GUPS application benchmark, shows that
sharing the firehose table reduces the amount of
firehose misses

Rate Achieved by Firehose-SMP During High Contention

0

100

200

300

400

500

600

700

1 2 4 6 8 10

Threads

R
eq

ue
st

s/
se

co
nd

Requests per thread

Aggregate Requests

Figure 8: 32Kb Put rate (both aggregate and per thread)
achieved using firehose-SMP as the number of
competing client threads increases. Error bars for
2 threads or more represent the rate obtained by
competing threads.

of high performance memory systems. While GUPS is not an ideal candidate to measure the performance and even
correctness of firehose SMP, its random 8-byte updates to various areas of the UPC global shared heap provide
interesting communication patterns. These updates translate into firehose requests to pin memory referenced by all
participating computation threads, which means that two UPC computation threads per node on the dual-processor
test system share a single firehose table. The graph compares the number of firehose moves requested during the
entire application run between two computation thread layouts – one where 4 UPC threads are mapped to single
processes on four nodes and another where 2 Pthreads are run within a single process on two nodes. As we increase
the GUPS table size, the number of firehoses misses generated by each node decreases (with a 35% improvement
in the case of a 256MB table). As such, firehose-SMP does help in reducing the number of firehoses misses in a
CLUMPs configuration.

Testing the implementation for correctness is a much more difficult task. Since most of the problem cases

13

are difficult to predict, let alone to generate from the point of view of an application, synthetic benchmarks were
created to validate the correctness of the algorithm and test its implementation. For example, reducing theM and
M+MAXVICTIM parameters and issuing remote put requests very close to the limits can synthetically generate high
contention. We’ve adapted some of the GASNet benchmarks to spawn large amounts of threads and test every
aspect of the implementation – local and remote rollbacks when other threads acquire the deadlock avoidance bit,
correct handling of firehoses in pending states, etc. As such, we are satisfied with the level of correctness currently
implemented in Firehose SMP.

The fairness property was tested by using a benchmark that scatters 32Kb puts from the same source location
but to a random location at a large remote memory space. Since 32Kb is 8 memory pages, we assignedf to 8 such
that only 8 firehoses be available to all threads – this requires each requesting node to move existing firehoses in the
case of a miss (which is the common case on a large target memory space). In figure 8 we report the rate at which
firehose requests could be issued by each competing client thread as the number of client threads are increased
(we report the obtained median values out of 10 runs). It should also be noted that since the test system has only
two processors, testing with greater than four threads does not represent a case that will be replicated by firehose
clients. Similarly, we do not report values for an odd number of threads as we want each processor to be assigned
an equal amount of runnable threads. It should be noted that in all cases, the deadlock avoidance path was taken
between 75% and 85% of the time depending on the number of threads, which confirms that we are effectively
testing fairness with and without deadlock avoidance being used. A few fairness guarantees can be validated from
this graph:

• The error bars are plotted for thread counts greater than 1 to represent the rate obtained by all competing
threads. Very small errors show that all competing threads post a similar rates.

• The aggregate rate of all thread requests is also plotted as a line on the graph and the fact that it slowly
decreases shows that the implementation does not suffer any important performance degradation in particular
parts of the code. Rather, the decreasing aggregate rate is a sign of increasing the amount of work for the
thread scheduler. The peak at around 4 threads is a side-effect of keeping each processor busy with at least
two instead of one runnable communication bound thread.

Among other points of interest is the rate at which deadlock recovery is resorted to as the available number of
firehosesf is increased. Additionally, the actual application speedups allowed by sharing the firehose table are also
important to firehose clients. However, this the requirement for bug-free operation constitutes the major hurdles in
the implementation, we leave performance analysis as an upcoming research topic.

6 Conclusion

One-sided zero-copy RDMA communication is the preferred approach for obtaining high-performance and low-
bandwidth transfers on high-performance networks. While many techniques have been proposed in the past to
optimize for high bandwidth transfers, the true problem of not burdening applications with explicitly pinning remote
pages for RDMA had never been dealt with entirely. With the Firehose algorithm, clients benefit from one-sided
zero-copy RDMA in the common case and pay some synchronization overhead in the uncommon case. The original
firehose paper [1] showed that in two application kernels (Cannon Matrix Multiply and Parallel Bitonic sort), up to
99.8% of all communication could be completed entirely one-sided.

This paper proposes mechanisms to handle sharing of a common firehose table between two or more computa-
tion threads. On a non-SMP configuration, the firehose table access patterns cause split-phase accesses and updates
to the table in the context of both updating table entries for locally and remotely initiated pinning operations. With
threaded CLUMP clients, split phase accesses to the table turn into concurrent split-phase accesses, which leads
to resource partitioning problems and complications in maintaining firehose table consistency. Using an optimistic
method of recovering replacement firehoses, we allow each thread to make independent progress in the case of low
contention and resort to a deadlock avoidance protocol in the uncommon case of high contention. In all areas of the

14

presented analysis for an SMP-aware firehose implementation, worse-case operation is considered and low over-
head solutions are presented even though common case operation should not require deadlock avoidance. For these
uncommon cases, deadlock-prone communication traces are used to verify and validate that the implementation is
working correctly and remains fair with respect to all competing threads.

References

[1] C. Bell and D. Bonachea. A new dma registration strategy for pinning-based high performance networks. In
Workshop on Communication Architecture for Clusters (CAC’03), Nice, France, April 2003.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
gigabit-per-second local area network.IEEE Micro, 15(1):29–36, 1995.

[3] D. Bonachea. GASNet specification, v1.1. Tech Report UCB/CSD-02-1207, U.C. Berkeley, October 2002.

[4] J. Nieplocha, V. Tipparaju, and D. Panda. Protocols and strategies for optimizing performance of remote
memory operations on clusters. InWorkshop Communication Architecture for Clusters (CAC02) of IPDPS’02,
Ft Lauderdale, FL, 2002.

[5] Quadrics Supercomputing.Quadrics QSNet Interconnect, 2002.http://www.quadrics.com.

[6] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mechanism for inte-
grated communication and computation. InProceedings of the 19th International Symposium on Computer
Architecture, pages 256–266, Gold Coast, Australia, May 1992.

15

