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Abstract

Partitioned Global Address Space (PGAS) models, typified by languages such as Unified Parallel
C (UPC) and Co-Array Fortran, expose one-sided communication as a key building block for High
Performance Computing (HPC) applications. Architectural trends in supercomputing make such pro-
gramming models increasingly attractive, and newer, more sophisticated models such as UPC++, Legion
and Chapel that rely upon similar communication paradigms are gaining popularity.

GASNet-EX is a portable, open-source, high-performance communication library designed to effi-
ciently support the networking requirements of PGAS runtime systems and other alternative models in
future exascale machines. The library is an evolution of the popular GASNet communication system,
building upon over 15 years of lessons learned. We describe and evaluate several features and enhance-
ments that have been introduced to address the needs of modern client systems. Microbenchmark results
demonstrate the RMA performance of GASNet-EX is competitive with several MPI-3 implementations
on current HPC systems.
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1 Introduction

1.1 Background on GASNet-1

The GASNet project began in 2002 [14] as an effort to provide a common, open-source HPC communica-
tion API tailored for use as a compilation target by Partitioned Global Address Space (PGAS) languages,
notably including UPC [75], Titanium [38], and Co-Array Fortran [65]. Communication behavior in these
models is often characterized by one-sided, remote-memory-access (RMA) communication (i.e., Puts and
Gets operating on physically distributed memory), and sensitivity to the latency and overheads of fine-
grained communication. The initial GASNet API (hereafter referred to as GASNet-1) offers two primary
modes of communication: (1) a one-sided RMA interface that exposes the RDMA capabilities of network
hardware, enabling their use to directly implement PGAS Put/Get operations on user data structures, and
(2) a streamlined Active Message (AM) [30] interface to provide extensibility and efficient management of
the client’s parallel runtime system.

Design goals for the GASNet communication system included: network-independence (insulating long-
lived clients from low-level hardware details and changes), language-independence (leaving details of the
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PGAS system such as global pointer representation and allocation strategy to the client), robust multi-
threading support (efficiently allowing a variety of client threading models on multi-core architectures),
and widespread portability. The GASNet development effort has focused on providing a high-performance,
production-quality communication layer tailored for the needs of PGAS systems.

The GASNet API [17] has become the de-facto communication standard targeted by portable PGAS
system implementations developed by many institutions. Current and historical GASNet clients include:
LBNL UPC++ [3, 4, 79], Berkeley UPC [22], GCC/UPC [46], Clang UPC [45], Cray Chapel [19], Stanford
Legion [6], Titanium [78], Rice Co-Array Fortran [26], OpenUH Co-Array Fortran [29], OpenCoarrays in GCC
Fortran [32], OpenSHMEM Reference implementation [70], Omni XcalableMP [57], and several miscellaneous
projects [10, 18, 20, 27, 51, 52, 71]. Some of these clients implement models that fall outside the traditional
PGAS definition, showing that the applicability of GASNet exceeds the original goals. The services provided
and the match to modern hardware capabilities make GASNet an excellent communication substrate for
implementing a wide variety of models.

GASNet uses the term “conduit” to refer to any complete implementation of the GASNet API which
targets a specific network device or lower-level networking layer. GASNet conduits have been written that
target a variety of past and current vendor-proprietary or hardware-specific networking interfaces, includ-
ing: OpenFabrics Verbs/VAPI for InfiniBand [37, 42], Mellanox MXM for InfiniBand [53], Cray GNI for
Gemini and Aries fabrics [1, 36, 41], Intel PSM2 for Omni-Path [9, 44], IBM PAMI for BlueGene/Q (and
others) [49], IBM DCMF for BlueGene/P [50, 63], IBM LAPI for SP Colony/Federation [40], Cray Portals
for XT3/XT4 [16], SHMEM for the Cray X1 [8] and SGI Altix [28], Quadrics elan3/elan4 for QsNetI/II [69],
Myricom GM for Myrinet [7, 11], and Dolphin SISCI [73]. There are also GASNet conduits implemented
over portable network APIs that enable deployment on early systems or those lacking HPC networking hard-
ware. These include: udp-conduit (for any network with a TCP/IP stack, such as Ethernet) mpi-conduit
(for any system providing MPI 1.1 [55] or newer), ofi-conduit (targeting the portable libfabric API [35]),
portals4-conduit (for Sandia Portals 4 [5]), and smp-conduit (for single-node systems, such as laptops).

Most of the conduits described above were authored by members of our group, but several conduits have
been contributed by a relevant vendor or external group. Additionally, some projects have developed forks of
GASNet (for instance to target non-public network APIs), including MVAPICH2-X [47] and others [48, 77].
GASNet’s implementation is designed so that authors of new conduits only need to port a minimal core
(consisting of a few job management routines and the AM interfaces) to achieve full functionality. We
provide reference implementations of all other interfaces, which can be incrementally replaced with higher-
performing native versions. The GASNet implementation is written in standard C and is very portable
across architectures and operating systems. Over the years, it has been ported to a diverse range of systems,
encompassing over 10 compiler families, 15 operating systems and dozens of architectures – see [33] for
details.

1.2 Philosophy of GASNet-EX improvements

GASNet-EX is the next generation of the GASNet-1 communication system, continuing our commitment
to provide portable, high-performance, production-quality, open-source software. The GASNet-EX upgrade
is being done over the next several years as part of the U.S. Department of Energy’s Exascale Computing
Program (ECP). The GASNet interfaces are being redesigned to accommodate the emerging needs of exascale
supercomputing, providing communication services to a variety of programming models on current and future
HPC architectures. This work builds on fifteen years of lessons learned with GASNet-1, and is informed and
motivated by the evolving needs of distributed runtime systems.

The end of Moore’s Law scaling for serial processor performance has led to increasing levels of on-die par-
allelism, lighter-weight cores, and deeper on-node memory hierarchies; these trends are expected to continue
in future HPC architectures. We expect future runtime systems and applications will migrate away from
bulk-synchronous parallel algorithms and increasingly adopt approaches with looser inter-node synchroniza-
tion, using aggressively asynchronous communication such as in UPC++ [3] or dynamic tasking features
available in systems such as Chapel [19], Legion [6] and X10 [21]. This motivates a communication system
interface that enables the client to adapt to the dynamic behavior of the system, for example adjusting
the communication schedule on-the-fly based on network backpressure. There is also motivation to improve
the efficiency of memory buffer behavior in the communication system, for example providing finer-grained
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control over buffer lifetime and exposing mechanisms to reduce in-memory payload copying. Modern HPC
networks often include hardware support for offloading various communication-related tasks from the host
processor, such as packing/unpacking of non-contiguous communication buffers, performing atomic memory
updates initiated by remote peers, and orchestrating collective communications (e.g., reductions and bar-
riers). Interfaces are being added in GASNet-EX that allow clients to express these high-level patterns in
ways that can take advantage of such hardware support where available. Finally, there is a need for im-
proved system abstractions to enable interoperability in hybrid programs, allow finer-grained or thread-level
partitioning of communication work, and ensure all parts of the communication system scale efficiently to
millions of ranks.

2 Design of GASNet-EX

2.1 Overview of Improvements

The GASNet interface is being redesigned and extended in a number of ways to meet the needs of exascale
runtime systems. Most of the functionality and abstractions from GASNet-1 are still present, but have
been generalized in several ways. (The GASNet-EX distribution notably includes a backwards-compatibility
layer to enable incremental migration of current GASNet-1 client software to GASNet-EX). In GASNet-1,
initialization was monolithic and assumed a single client/endpoint/segment per process. In GASNet-EX,
initialization becomes more incremental and includes an object model where the Client, registered memory
Segments and communication Endpoints are all managed separately and explicitly. This design has already
enabled several interface improvements, and enables clients to naturally express more complicated use cases.
For example, AM handler registration is now per-Endpoint and can be performed incrementally, improving
client modularity. The Endpoint abstraction allows for multiple isolated communication contexts to co-
exist within a process, for example enabling GASNet-EX Active Messages to target specific threads within
a remote process. GASNet-EX adds APIs to scalably query and manage hierarchical process layouts and
memory Segments residing in inter-process shared memory.

Here is the signature for a representative non-blocking RMA Put operation in GASNet to demonstrate
some of the changes:

gasnet_handle_t /* GASNet -1 */

gasnet_put_nb(gasnet_node_t node , void *dest_addr ,

void *src_addr , size_t nbytes );

gex_Event_t /* GASNet -EX */

gex_RMA_PutNB(gex_TM_t tm, gex_Rank_t rank ,

gex_Addr_t dest_addr ,

void *src_addr , size_t nbytes ,

gex_Event_t *lc_opt , gex_Flags_t flags );

In both cases the contiguous source payload is indicated by a base address and size, but everything else
has changed. In GASNet-1, the destination process of every point-to-point operation was indicated using
an integer node id. In GASNet-EX a destination Endpoint is named via a team (TM) and rank id pair –
improving client composability, and enabling Endpoints to be dynamically added to the system for various
purposes. The team argument names not only an ordered set of Endpoints, but also the local representative
Endpoint and its containing Client. This object hierarchy can be traversed by client code, which can query
various attributes and even set client-owned context attributes.

In the GASNet-1 API, the remote target for the RMA Put is specified using a virtual address. The
GASNet-EX API still allows this, but additionally enables offset-based addressing into a memory Segment
bound to the destination Endpoint – potentially improving scalability of client metadata, and enabling future
work in binding of memory Segments to non-DRAM device memory. GASNet-EX adds a flags argument to
most functions for extensibility, allowing the semantics and performance characteristics of many calls to be
modified by passing appropriate flags (e.g., passing assertions about the argument values that can obviate
the need for more expensive dynamic checking).
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Figure 1: Non-bulk Put flood bandwidth on Cray Aries with and without use of a local completion event at
the GNI level.

GASNet-1 non-blocking operations return a monolithic handle used for later synchronization. This
concept has been generalized to GASNet-EX Events, which can have sub-Events representing intermediate
steps that occur before completion of an entire operation, enabling clients to explicitly respond to such
state changes. For example, the RMA Put has an argument for specifying the local completion behavior
of the source memory (i.e. the two options in GASNet-1 being stall upon injection or delay until remote
completion). GASNet-EX allows the operation to generate a sub-Event, so the client initiating the Put can
independently track both local and remote completion of the same operation.

All figures in the remainder of Sec. 2 are reproduced (with permission) from our technical report [36] and
show the performance of GASNet-EX aries-conduit on Cray XC40 systems (Cray Aries network) – see the
report for full methodological details (omitted from this paper due to space constraints).

2.2 Local Completion Control

As mentioned above, GASNet-EX adds sub-Events into the generalization of the GASNet-1 handle abstrac-
tion, and “local completion” is one of the uses for this new concept. With the new option to independently
track local completion, a client can free or reuse a source buffer as soon as it is safe to do so without the
cost of blocking for local completion in the injection call (the only mechanism available in GASNet-1 for
separating local and remote completion). This provides an increase in time available for overlap of commu-
nication with computation, or with additional communication. To evaluate the effects of this enhancement,
we measured the bandwidth achieved by a microbenchmark where the client issues a series of non-blocking
Puts but requests each injection to stall for local completion before return. Fig. 1 shows this benchmark can
be improved by as much as 32% through the separation of local completion from operation completion.

2.3 Immediate-mode Communication Injection

Both GASNet APIs permit “non-blocking” communication injection operations to block temporarily (stall)
when resources are not readily available to initiate the requested communication. This backpressure be-
havior arises fundamentally from a design principle prohibiting unbounded buffering within our GASNet
implementation. However, a client of GASNet-EX can use the new flags argument to request “immediate
mode” injection, wherein an operation that determines it would stall will instead be cancelled and return a

Lawrence Berkeley National Laboratory Technical Report (LBNL-2001174) doi:10.25344/S4QP4W
Workshop on Languages and Compilers for Parallel Computing (LCPC’18)

4

https://doi.org/10.25344/S4QP4W


D. Bonachea and P. H. Hargrove GASNet-EX: A High-Performance Communication Library for Exascale

distinguishing value. This enables the client to dynamically respond to the resource congestion along that
path in a client-specific manner; for example rescheduling the operation for later retry or electing to attempt
communication with a different, less-congested peer (as one might do when implementing a work-stealing
task scheduler).

The effect of stalling can be especially evident in communications using AMs destined to a peer which
is not actively entering the GASNet library (an “inattentive” peer). Our investigation found that exposing
backpressure in the Active Message APIs can reduce running time by as much as 97% on a synthetic
benchmark simulating communication with inattentive peers. This is illustrated in Fig. 2 which shows the
reduction in overall communication time obtained by using immediate-mode AM injection to dynamically
adjust the communication schedule in response to backpressure, as compared to three static schedules that
stall on backpressure.

Figure 2: Reduced communication delays using immediate-mode Active Messages.

2.4 Active Message Improvements

Inclusion of AMs in GASNet-1 provides extensibility and efficient management of the client’s parallel runtime,
for instance UPC shared-heap management or locks. More recent GASNet clients such as Cray Chapel [19]
and Stanford Legion [6] make heavy use of GASNet AMs for moving computation to data. GASNet-EX
introduces several improvements to the AM interfaces, primarily related to efficient use of memory and
reduced in-memory copies. GASNet-EX AM calls provide for immediate-mode injection and local-completion
control, as described previously. These are notable improvements over GASNet-1, where AM injection calls
unconditionally block until the message is guaranteed to enter the network, and return only after local
completion of the payload. While GASNet-1 has APIs to query the maximum AM payload for distinct
classes of message, GASNet-EX refines the precision of these queries; this enables the client to, for instance,
take advantage of space otherwise occupied by unused arguments, or to send significantly larger payloads
when the destination is reachable through shared memory.

In addition to these incremental improvements, GASNet-EX adds an entirely new family of AM interfaces
known as “Negotiated-Payload” AMs (NP-AM). The new NP-AM feature utilizes a split-phase send that,
among other new capabilities, allows GASNet-EX to provide a network-level buffer into which the client
directly writes its outgoing payload. In clients that construct payloads dynamically (for instance combining
a header with data from a higher layer) this eliminates an in-memory copy often required to concatenate the
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AM header and to move the payload into memory registered with the network. Our measurements show that
this use of NP-AM to reduce memory copies in the critical path improves measured bandwidth on an AM
ping-pong benchmark by as much as 14% relative to the traditional “Fixed-Payload” AMs in GASNet-1, as
illustrated by the upper (red) series in Fig. 3.

Figure 3: NP-AM speedup of ping-pong test with dynamically generated payload.

2.5 Remote Atomics

Remote atomics are a new feature in GASNet-EX, providing non-blocking interfaces to perform a rich set
of operations atomically on several data types in distributed memory. The semantic design for GASNet-EX
remote atomics is derived from that used in UPC 1.3 [75], where operations are performed with respect to an
“atomic domain”. An atomic domain is constructed (outside the critical path) by specifying a data type and
a set of atomic operations, and is later used to initiate any of the given operations on data of the given type.
Use of atomic domains allows for selection of the fastest-available implementation that can correctly provide
the set of atomic operations needed concurrently by the application. This is important because in general
one cannot mix atomics offloaded to a NIC with others implemented using the host CPU concurrently to the
same target location, due to coherency problems on many modern systems. Atomic domains address this
by selecting NIC offload implementations if and only if the entire set of operations given at domain creation
can be coherently offloaded, and a CPU-based implementation otherwise. Optional flags to atomic domain
construction can guide algorithm selection in application-specific ways, for example to favor the performance
of accesses across the network, or trade it off for improved performance of updates from shared-memory
peers.

Our measurements show there is significant advantage to offloading of atomic operations to the network
hardware support provided by Cray Aries, as compared to a network-independent reference implementation,
such as one a client author could write using AMs. The latency of a 64-bit fetch-and-add was reduced by
70% on a point-to-point test, and a hot-spot test was shown to scale robustly as illustrated in Fig. 4. Future
work to offload atomic operations to InfiniBand network hardware is expected to yield qualitatively similar
results.
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Figure 4: Scaling of a remote atomics hot-spot test on the Cray Aries network.

2.6 Non-contiguous RMA

A set of extensions to GASNet-1 were proposed in [12] to support non-contiguous RMA operations. These
types of operations may be generated by optimizations performed by UPC and CAF compilers, or can
be used by application authors or distributed array libraries to express transfer of multidimensional array
sections. The extensions are jointly referred to as “VIS” and include “Vector”, “Indexed” and “Strided”
APIs for Put and Get, differing in the generality (and thus size) of the metadata used to describe the source
and destination regions. The Strided design for multidimensional array sections was influenced by that
of ARMCI [62]. While GASNet-1 fully implemented the VIS extensions, they were never included in the
formal specification. GASNet-EX incorporates the VIS APIs (no longer considered extensions) with updates
to express local-completion control and immediate-mode injection. The implementation of VIS in GASNet-
EX leverages new EX features (most notably the Active Message enhancements) to improve performance
relative to GASNet-1. Fig. 5 demonstrates the bandwidth improvement of a microbenchmark measuring a
representative 3-d Strided Put operation, implemented inside GASNet-EX using traditional AM or NP-AM,
relative to the bandwidth achieved by the GASNet-1 VIS implementation.

2.7 Collective Communication

As illustrated in Sec. 2.1, point-to-point communication in GASNet-EX uses a (team, rank) pair to identify
the peer, whereas GASNet-1 took only a rank. In addition to this role in point-to-point communication,
teams name the participants in collective communications operations. As with VIS, collectives were imple-
mented in GASNet-1 [64] but never appeared in a formal specification. GASNet-EX adds specification and
implementation of collective operations, with key improvements over the APIs implemented in GASNet-1.
GASNet-EX collectives are always non-blocking, using the same Event type as all other asynchronous oper-
ations, whereas GASNet-1 has a distinct type and APIs for tracking completion of collectives. The use of
the general Event infrastructure enables local-completion control for collectives. Finally, the GASNet-EX
reduction operation includes type information, lacking from GASNet-1, which is critical to enabling network
hardware offload.
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Figure 5: Improved Strided Put performance, relative to GASNet-1.

2.8 Design Improvements for Scalability

One of the primary motivations behind the redesign of GASNet is to improve scalability of both the imple-
mentation and client-facing APIs—a necessary step towards achieving exascale performance on upcoming
systems, which are expected to reach millions of cores. Several GASNet-1 APIs were designed without
sufficient allowance for such extreme-scale systems, and GASNet-EX replaces these with more scalable al-
ternatives. For example, the GASNet-1 function to query segment information writes to a client-allocated
array with entries for every process in the job, imposing a non-scalable requirement on both the client and
library. GASNet-EX instead provides a query to retrieve information about a selected peer, consuming only a
small constant amount of memory and enabling implementations that discover peer information on-demand
at scale. There are also new scalable queries for processes to discover information regarding co-located peers
within a hierarchical system.

GASNet-EX API extensions to use offset-based addressing in RMA calls (Sec. 2.1) will enable client
runtimes supporting symmetric heap features to eliminate non-scalable base address tables. Immediate-
mode injection (Sec. 2.3) improves support for asynchrony, strengthening latency tolerance and enabling
dynamic adjustment to congestion and load imbalance that become more prevalent at scale. The redesigned
GASNet-EX teams interface (Sec. 2.7) includes scalable rank translation queries designed to keep non-scalable
tables out of client data structures. Enhancements enabling NIC hardware offload of collectives (Sec. 2.7)
and remote atomics (Sec. 2.5) are expected to become increasingly important at extreme scale.

3 RMA Microbenchmarks

Both the specification and implementation of GASNet-EX are still evolving. However, as described in the
previous section, the new features are already capable of delivering measurable benefits for use cases of
interest. These new features have not come at the cost of GASNet-1’s core competencies in RMA and AM.
This section presents microbenchmarks measuring the RMA performance of GASNet-EX on four systems,
demonstrating that it remains competitive with MPI-3 RMA. Application-level benchmarks would introduce
overheads specific to the client runtime, and are outside the scope of this paper.

Our measurements attempt to reproduce the experience of a non-expert end-user. On three vendor-
integrated systems using environment modules, we have used the default modules with only one exception
to be described below. On a commodity InfiniBand cluster we have used the compiler pre-installed as
/usr/bin/gcc. When building software (including GASNet-EX and all microbenchmarks) we followed the
instructions without the application of any expert knowledge. No configuration settings, environment vari-
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ables, or similar means were used to improve the performance of GASNet-EX or MPI1. We benchmarked
GASNet-EX version 2018.9.0 using two tests selected from those provided with the source code distribu-
tion. For MPI-3 benchmarking we have selected the publicly available Intel MPI Benchmarks [43] (IMB),
version v2018.1.

3.1 Description of the Systems

The first two systems are the partitions of the Cray XC40 [23, 31] system at NERSC [61], known as
“Cori”. Both use a Cray Aries [1] network, but they have distinct node types: “Cori-I” [59] nodes each
have two Intel Xeon E5-2698v3 16-core “Haswell” processors and “Cori-II” [60] nodes each have a single
Intel Xeon Phi 7250 “KNL” processor with 272 hardware threads. All tests on the Cori systems were
compiled with the default programming environment modules: PrgEnv-intel/6.0.4, intel/18.0.1.163
and cray-mpich/7.7.0. The only non-default modules used were for CPU-specific optimization: following
NERSC’s user documentation, compilation of code to execute on Cori-I and Cori-II used the craype-haswell
and craype-mic-knl environment modules, respectively.

The “Gomez” system at JLSE [2] is a commodity InfiniBand cluster. Each node has two Intel Xeon
E7-8867v3 “Haswell-EX” CPUs and is connected to a 100Gb/s EDR InfiniBand network by a Mellanox
“ConnectX-4” Host Channel Adapter (HCA). All tests on this system were compiled with the system-
default GNU compilers, version 4.8.5 20150623 (Red Hat 4.8.5-16). MPI tests used MVAPICH2 [58],
version 2.3.

The “Summitdev” [67] system at OLCF [66] consists of IBM S822LC [76] nodes, each with two 10-core
POWER8 CPUs and connected to a 100Gb/s EDR InfiniBand network by two Mellanox “ConnectX-4”
HCAs, each with affinity to a single socket. Software compiled on this system used the default IBM XL
compilers, version V13.1.6. MPI tests use the default IBM Spectrum MPI, version 10.2.0.0-20180110.

3.2 RMA Flood Bandwidth Benchmark

A “flood bandwidth” benchmark measures achievable bandwidth at a given transfer size by initiating a large
number of non-blocking transfers and waiting for them all to fully complete. The reported metric is the
total volume of data transferred, divided by the total elapsed time. We report uni-directional (one initiator
to one target) flood bandwidths, where the passive target waits in a barrier.

For GASNet-EX we used the testlarge microbenchmark to measure performance of the gex RMA PutNBI

and gex RMA GetNBI functions, synchronized with a final gex NBI Wait. We measured flood bandwidth of
the MPI Put and MPI Get functions using the “Aggregate” timings from, respectively, the Unidir put and
Unidir get tests from the IMB-RMA suite (these tests measure the time to issue RMA and synchronize using
MPI Win flush, within a passive-target access epoch established by a MPI Win lock(SHARED) call outside
the timed region – see [43] for further details). The testlarge benchmark reports bandwidths in units of
“MiB/s” (220 bytes per second), whereas IMB-RMA uses “MB/s” (106 bytes per second). Both have been
converted to “GiB/s” (230 bytes per second) for the plots which follow. To allow comparison between RMA
and message passing, the plots which follow also report uni-directional bandwidth of MPI Isend/MPI Irecv,
from the “Aggregate” timings of the Uniband test from the IMB-MPI1 suite.

All tests ran between two compute nodes, using a single process per node. Data was collected from 16
distinct batch jobs, each running one instance of each GASNet-EX and MPI test back-to-back. Each data
point plotted reports the maximum achieved bandwidth for that benchmark and transfer size. For RMA
tests we used 100, 000 iterations on the Aries systems, and 10, 000 on the EDR InfiniBand systems. For the
message passing test, we used 5, 000 and 500 iterations, respectively.

In Fig. 6, “×” markers denote GASNet-EX RMA, “◦” markers denote MPI-3 RMA, and “+” markers
denote MPI message passing. RMA Put results are distinguished by the use of solid lines in shades of blue,
while RMA Get results use dot-dashed lines in shades of red. Dashed green lines are message-passing results.

On three of the four systems, the bandwidth of GASNet-EX Put and Get are seen to rise rapidly to
saturation, at payloads as small as 4 or 8KiB. All GASNet-EX saturation bandwidths are at least comparable

1On Summitdev we set one environment variable to restrict the MPI implementation to a single rail of the dual-rail network,
to provide a meaningful comparison to GASNet-EX. We recommend this configuration because use of a single rail per process
can yield significant latency improvements.
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Figure 6: Uni-directional flood bandwidth versus transfer size.
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Table 1: Round-trip latency of 8-Byte RMA accesses.
8-Byte RMA Put Latency 8-Byte RMA Get Latency

System GASNet-EX MPI-3 RMA Ratio GASNet-EX MPI-3 RMA Ratio

Cori-I 1.07 µs 1.20 µs 0.89 1.43 µs 1.57 µs 0.91
Cori-II 2.15 µs 3.42 µs 0.63 2.60 µs 4.06 µs 0.64
Gomez 1.41 µs 1.51 µs 0.94 1.82 µs 1.91 µs 0.95

Summitdev 1.61 µs 8.10 µs 0.20 2.10 µs 8.13 µs 0.26

to their MPI-3 RMA analogue. The KNL-based Cori-II system shows behavior different from the other three,
and this is particularly unexpected because Cori-I and Cori-II use the same network and software versions.
Doerfler et al. [25] identified the cause of the two maximum bandwidth plateaus on this system as an issue
with PCIe bus latency.

3.3 RMA Latency Benchmark

We next report on the round-trip latency of GASNet-EX and MPI-3 RMA operations. These benchmarks re-
port the mean time to fully complete a single RMA Put or Get operation, computed by timing a long sequence
of blocking operations. For GASNet-EX we measured the gex RMA PutBlocking and gex RMA GetBlocking

functions using the testsmall microbenchmark. For MPI-3 benchmarking we report the “Non-aggregate”
timings from the Unidir put and Unidir get tests from the IMB-RMA suite, which are semantically equiv-
alent to the GASNet-EX test. These are the same tests used to measure flood bandwidth, but differ by
executing a sequence of MPI Put (or MPI Get) calls alternating with calls to MPI Win flush, whereas the
“Aggregate” timings used for bandwidth have only a single MPI Win flush at the end.

Data was collected from the same 16 batch jobs described for the flood bandwidth benchmark. Our
results are summarized in Tbl. 1, which reports the minimum latency achieved by each benchmark for the
cases of blocking RMA Put and Get with 8-byte payloads. Each row includes the ratio of the corresponding
GASNet-EX and MPI-3 results, which is also representative of timings over power-of-two sizes from 4 bytes to
1024 bytes (not shown). In all cases measured, GASNet-EX demonstrated comparable or improved latency
relative to MPI-3 RMA.

4 Related Work

The GASNet library provides communication services for a wide variety of runtime clients, as discussed in
Sec. 1.1. The communication requirements of these clients can be broadly summarized as including portable,
high-performance RMA for one-sided data motion, and Active Messages that trigger remote code execution
as a building block for higher-level distributed protocols. This section describes competing middleware efforts
that provide related facilities.

At the time the GASNet project began, the most notable related effort was the RMA extensions intro-
duced in the MPI-2 specification [54]. The widespread availability and investment in MPI implementations
over the years makes MPI a politically attractive communication substrate. However as explained in [15], a
number of fundamental semantic defects in the MPI-2 RMA specification made it unsuitable for practical use
as communication middleware for PGAS runtimes – justifying the investment in approaches tailored to the
needs of PGAS clients, such as GASNet and ARMCI [62]. Most of these defects were subsequently addressed
fourteen years later in the MPI-3 specification [56]. Most importantly, the introduction of the (optional)
MPI WIN UNIFIED memory model and dynamic MPI RMA windows made it feasible to use passive-target
MPI RMA to satisfy the basic RMA communication needs of some PGAS runtimes. Sec. 3 demonstrates
the performance of GASNet-EX RMA is competitive with that of MPI RMA in several widely used MPI-3
implementations. A number of efforts are underway to improve the behavior and performance of MPI-3
RMA implementations, for example [34, 39]. During the six month interval that we performed data collec-
tion in preparation for this paper, we’ve observed noticeable improvement in the performance of all three
MPI-RMA implementations measured. There are also efforts underway to implement some PGAS systems
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using MPI-3 RMA [80]. MPI-3 offers a wide variety of features that are absent from GASNet-EX, which
focuses on providing AM and RMA services for parallel runtimes.

However the current MPI-3 API still lacks several features that are important to GASNet-EX’s clients
– most notable amongst these is Active Messages, which are critical to systems such as Berkeley UPC,
UPC++, Legion, Chapel, and others. Prior work [13] has demonstrated that emulating active message
functionality over MPI’s message-passing interfaces is possible, but the performance may be prohibitively
expensive relative to native implementations. ComEx [24] implements the Global Arrays PGAS library using
MPI message passing and hidden progress processes operating on MPI shared memory segments (deliberately
avoiding the MPI-RMA interface), however they admit their approach is insufficient for providing clients
with Active Message functionality.

GASNet-EX and MPI-3 RMA differ in other details of relevance to PGAS clients. For example, GASNet-
EX offers fine-grained control over the synchronization of RMA operations, whereas MPI-3 RMA notably
lacks the ability to independently synchronize remote completion of concurrent Put and Accumulate oper-
ations targeting the same remote window. Atomic domains in GASNet-EX enable aggressive use of offload
hardware for remote atomics, even when concurrently mixing different atomic update operations to the
same target location, whereas MPI’s accumulate semantics disallow this. The GASNet-EX immediate-mode
injection feature introduced in Sec. 2 has no direct analogue in MPI RMA.

There are two relatively recent industry-driven efforts to provide portable, open-source HPC networking
middleware to sit below parallel runtimes, similar to GASNet-EX. OpenFabrics libfabric [35, 68] portably
provides one-sided RMA and remote atomic operations suitable for implementing PGAS-style RMA, in
addition to tag matching and messaging queues suitable for implementing message-passing APIs. There
are implementations of GASNet, OpenSHMEM, MPI-3 and other models over libfabric, which in turn
offers providers that run across a variety of high-performance network fabrics. Unified Communications X
(UCX) [72, 74] is a similar, independent effort to provide a portable network abstraction layer for authors
of HPC middleware such as MPI and PGAS runtimes.

5 Conclusions

This paper describes GASNet-EX, a portable, open-source, high-performance, next-generation communica-
tion library designed to efficiently support the networking requirements of distributed runtime systems in
future exascale machines. We presented several extensions and enhancements that GASNet-EX adds to the
traditional GASNet APIs, including: independent local-completion control, immediate-mode communica-
tion injection, Active Message improvements, and remote atomic operations, as well as improved support
for non-contiguous RMA, teams and collective communication. Initial evaluations of the new features and
enhancements are positive, showing a potential for improved communication efficiency by reducing buffer
memory size and lifetime, eliminating injection stalls, and streamlining several GASNet interfaces to max-
imize scalability. Finally, we presented microbenchmark results demonstrating the RMA performance of
GASNet-EX is competitive with several MPI-3 implementations on modern HPC-relevant systems.
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