UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes Scott B. Baden (PI) and Paul Hargrove (co-PI) 2.3.1.14

GASNet-EX at Lawrence Berkeley National Lab (http://gasnet.lbl.gov)

- GASNet-EX: communications middleware to support exascale clients
 - One-sided communication Remote Memory Access (RMA)
 - Active Messages remote procedure call
 - Implemented over the native APIs for all networks of interest to ECP
- GASNet-EX is an evolution of GASNet-1 for exascale
 - Retains GASNet-1's wide portability (laptops to production supercomputers)
 - Provides backwards compatibility with GASNet-1 clients
 - Focus remains on one-sided RMA and Active Messages
 - Reduces CPU and memory overheads
 - Improves many-core support
- GASNet-1 clients include:
 - Multiple UPC and CAF/Fortran08 compilers
 - Stanford's Legion Programming System
 - Cray Chapel Language
 - OpenSHMEM Reference Implementation
 - Omni XcalableMP Compiler
- GASNet-EX clients include:

- GASNet-EX augments and enhances GASNet-1
 - Enhancements address needs of modern asynchronous PGAS models
 - Interfaces adjusted for improved scalability
 - Features critical to UPC++ are being co-designed
 - Using input from Legion and Cray Chapel, who plan to adopt the new APIs
- Features delivered in FY17 and so far in FY18 include:
 - "Immediate mode" injection to avoid stalls due to back-pressure
 - Explicit handling of local-completion (source buffer lifetime)
 - New AM interfaces, for instance to reduce buffer copies between layers
 - Vector-Index-Strided for non-contiguous point-to-point RMA
 - Remote Atomics, implemented with NIC offload where available
- Features to deliver in remainder of FY18 include:
 - Teams and non-blocking collectives
 - Dependent operations to control ordering of in-flight operations
- Features for FY19 and beyond may include:

- ECP ST: UPC++ and Legion; and PaRSEC exploring
- ECP AD: ExaBiome exploring
- non-ECP: Cray Chapel exploring

- Offset-based addressing
- Multiple endpoints/segments, for instance to enhance multithreading support
- Support for "out-of-segment" remote addresses

Highlights from Current Work

Example of EX interface updates: RMA Put

• GASNet-1:

gasnet handle t

```
gasnet put nb(gasnet node t node, void *dest addr,
              void *src addr, size t nbytes);
```

GASNet-EX: ۲

gex Event t

gex_RMA_PutNB(gex_TM_t tm, gex_Rank_t rank, gex_Addr_t dest_addr, void *src addr, size t nbytes, gex_Event_t *lc_opt, gex_Flags_t flags);

- gex Event t return type introduces events to generalize GASNet handles.
- tm argument adds team (ordered sets of ranks), into which rank indexes.
- gex Addr t type will enable offset-based addressing via same interface.
- 1c opt argument introduces explicit control over local completion, generalizing the bulk/non-bulk interfaces of GASNet-1.
- **flags** argument provides extensibility. For instance:
 - To select new optional behaviors (e.g., immediate mode and offset-based addressing)
 - To provide assertions regarding the arguments (e.g., to streamline the operation)

Vector-Indexed-Strided (VIS) Interfaces for Non-Contiguous RMA

SYSTEM	NETWORK -	INDEXED		STRIDED		VECTOR	
		GET	PUT	GET	PUT	GET	PUT
Cori-I	Cray Aries	11.68 ×	10.06 ×	12.55 ×	12.63 ×	8.83 ×	7.69 ×
Theta	Cray Aries	10.03 ×	7.70 ×	11.10 ×	9.94 ×	7.13 ×	5.89 ×
Titan	Cray Gemini	7.33 ×	7.21 ×	8.09 ×	8.61 ×	5.33 ×	5.51 ×
SummitDev	Mellanox InfiniBand	5.45 ×	5.17 ×	5.67 ×	5.63 ×	4.29 ×	4.29 ×
Cetus	IBM BG/Q	2.66 ×	3.49 ×	4.01 ×	4.34 ×	2.10 ×	2.82 ×

- Implements the Atomic Domains concept (first introduced by UPC 1.3)
 - Domains permit use of NIC offload even when not coherent with CPU
 - Domains are created collectively outside the critical path • A Domain has an associated data type and set of allowed operations

Remote Atomics with Cray Aries NIC Offload

- Formalizes and generalizes an unofficial extension to GASNet-1
- Three metadata formats for different scenarios
 - Vector: fully general array of iovec-like (address, length) pairs •
 - Indexed: array of addresses and a single length
 - Strided: arbitrary rectangular sections of dense multi-dimensional arrays
 - GASNet-EX adds transposition and reflection capabilities
- The table above shows the speed-up resulting from recent work that enables use of aggressive pack/unpack optimizations. Details of the benchmark are given in the report for ECP Milestone STPM17-5.

- Domains select the best implementation for the data type and ops
- e.g. use offload if and only if NIC implements **all** the requested ops
- Example: non-blocking atomic fetch-and-add (FADD) on unsigned 64-bit integer gex_Event_t ev = // *result = ATOMICALLY(*target += addend) gex_AD_OpNB_U64(domain, &result, target_rank, target_address, GEX OP FADD, addend, 0 / *unused op2* / , flags);
- **flags** includes optional behaviors and assertions, such as memory fences
- GASNet-EX provides a network-independent "reference implementation"
 - Uses Active Messages to perform operations using the target CPU
 - Uses GASNet-Tools for atomicity (inline assembly for numerous CPUs)
- Specialization for Cray Aries improves performance vs. reference implementation
 - Reduces latency of inter-node FADD from 4.9us to 2.8us
 - Greatly increases throughput under contention
- The figure above shows throughput of 1 to 8192 processes (64 per node) performing pipelined FADD of a central counter (measured on ALCF's Theta).

GASNet-EX Performance on Cray Aries

ALCF Theta

- Cray XC-40
- Cray Aries network
- GASNet-EX aries-conduit
- Cray MPICH 7.7.0
- Node configuration
- (GiB/s) • 64-core 1.3GHz Intel Xeon Phi 7230
- 192 GB of DDR
- Quad/cache mode

GASNet-EX Performance on InfiniBand

OLCF SummitDev

- GASNet-EX ibv-conduit
- IBM Spectrum MPI 10.1.0.4
- Node configuration

Flood Bandwidth Graphs report tests of achievable one-way bandwidth for point-to-point data transfer between two nodes. All bandwidths have been converted for uniform reporting in units of Gibibytes/sec (GiB/sec), where GiB = 2^{30} bytes.

• GASNet-EX: uni-directional non-blocking put flood bandwidth

Payload Size (bytes)

- NetPIPE v3.7.2: uni-directional stream Send/Recv test
- OSU Benchmarks v5.3: test osu_bw, uni-directional Isend/Irecv flood bandwidth


```
testlarge -in 10000 [MAXSZ]
Npmpi -s -n 10000 -u [MAXSZ]
osu bw -i 10000 -m [MAXSZ]
```


EXASCALE COMPUTING PROJECT

© 2018, Lawrence Berkeley National Laboratory