
UPC++ and GASNet-EX: PGAS Support for Exascale Applications
and Runtimes (Extended Poster Abstract)

Scott B. Baden, Paul H. Hargrove, Hadia Ahmed, John Bachan, Dan Bonachea,
Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen

pagoda@lbl.gov
Lawrence Berkeley National Laboratory, Berkeley CA

INTRODUCTION
Lawrence Berkeley National Lab is developing a programming sys-
tem to support HPC application development using the Partitioned
Global Address Space (PGAS) model. This work consists of two ma-
jor components: UPC++ (a C++ template library) and GASNet-EX (a
portable, high-performance, global-address-space communication
library).

1 UPC++
UPC++ [2, 3, 26] is a C++ library that supports Partitioned Global
Address Space (PGAS) programming. An early predecessor of UPC++
was released in 2012 [28]. This poster presents a new incarnation
of UPC++ with a very different design, which is tailored to meet the
needs of exascale applications that require PGAS support. There are
three main principles behind the redesign of UPC++. First, wherever
possible, operations are asynchronous by default, to allow the overlap
of computation and communication, and to encourage programmers
to avoid global synchronization. Second, all data motion is explicit,
to encourage programmers to consider the costs of communication.
Third, UPC++ encourages the use of scalable data-structures, and
avoids non-scalable library features. All of these principles are
intended to provide a programming model that can scale efficiently
to potentially millions of processors.

Like other PGAS models, UPC++ supports physically distributed
global memory, which can be referenced via special global point-
ers. Using global pointers, processes can copy data between their
local memory and remote global memory using one-sided Remote
Memory Access (RMA) operations. Unlike pointer-to-shared in
UPC [27], UPC++ global pointers cannot be directly dereferenced,
as this would violate our principle of making all communication
explicit. In addition to RMA, UPC++ also supports Remote Procedure
Calls (RPCs), whereby the caller can induce a remote process to
invoke a user function, including any arguments and generating
an optional result for return to the sender.

All operations that involve communication are non-blocking and
are managed through an API that includes futures and promises. A
future is the interface through which the status of the operation can
be queried and the results retrieved, so it represents the consumer
side of a non-blocking operation. Each asynchronous operation
has an associated promise object, which is created either explicitly
by the user or implicitly by the runtime when the non-blocking
operation is invoked. A promise represents the producer side of
the operation, and it is through the promise that the results of the
operation are supplied and its dependencies fulfilled. A user can
SC18, November 11–16, 2018, Dallas, TX, USA
© 2018 Copyright held by the owner/author(s).

pass a promise to a communication operation, which registers a
dependency with the promise and subsequently fulfills the depen-
dency when the operation completes. The same promise can be
passed to multiple communication operations, so that a user can
be notified when all such operations have completed.

Futures allow the construction of elaborate dependence-driven
graphs of asynchronously executed operations. A user can chain a
callback to a future via the .then() method, and the callback will
be invoked on the values encapsulated by the future when they are
available. The callback can be a function or a lambda, and it can
initiate asynchronous operations of its own. The .then() method
itself produces a new future, which can have further callbacks
chained onto it. Multiple futures can be conjoined to produce a
single future that represents readiness of all the input futures and
their resulting values.

UPC++ has several other powerful features that can enhance
programmer productivity and improve performance. For example,
UPC++ supports remote atomic operations, which are particularly
useful in managing distributed lock-free data structures. UPC++
also supports non-contiguous RMA transfers (vector, indexed and
strided), enabling programmers to conveniently express more com-
plex patterns of data movement.

The current version of UPC++ utilizes the GASNet-EX commu-
nication library [7] to deliver a low-overhead, high-performance
runtime. We present the results for two application motifs that
exemplify the benefits of UPC++, and more generally PGAS pro-
gramming. The first motif is a distributed hash table, which relies
on irregular, fine-grained communication, where latency is a lim-
iting factor. The second motif is a direct linear solver for sparse
symmetric matrices; it also benefits from the features of UPC++,
such as RPCs and RMA.

Fig. 1 demonstrates a strong scaling experiment on NERSC Edi-
son [23] comparing the symPACK solver written with UPC++ [4],
against two state-of-the-art direct linear solvers for sparse sym-
metric matrices: MUMPS 5.1.2 [1] and PaSTiX 5.2.3 [17]. SymPACK
makes aggressive use of the RPC and RMA capabilities of UPC++ to
enable a pull-based scheduling strategy. Thus these results report
the net result of replacing message passing (as implemented by
MPI) with RPC and RMA (as implemented by UPC++). As can be
seen, symPACK consistently displays lower execution times than
the other solvers up to 768 cores (32 nodes), demonstrating the low
overhead of UPC++ and the efficiency of the one-sided pull strategy
it enables. The same trend is shown by strong scaling experiments
conducted on the Extend-Add operation, a building block to mul-
tifrontal sparse solvers. A UPC++ implementation using RPCs is
consistently faster than two MPI-based implementations on NERSC
Cori [22].

SC18, November 11–16, 2018, Dallas, TX, USA S.B. Baden et al.
UPC++ and GASNet-EX SC18, November 11–16, 2018, Dallas, TX, USA

24 48 96 14
4

19
2

26
4

38
4

57
6

76
8

Process count

101

102

Ti
m

e
(s

)

Run times for Flan_1565
MUMPS 5.1.2

PASTIX 5.2.3

symPACK

Figure 1: SymPACK/UPC++ vs. competing solvers

Figure 1: SymPACK/UPC++ vs. competing solvers

2 GASNET-EX
GASNet-EX [7] is a lightweight communications middleware layer
designed to support exascale clients, and is implemented over the
native APIs of many networks, including all of those in use at
the HPC centers of the U. S. Department of Energy’s Office of Sci-
ence [10]. It features one-sided communication via Remote Memory
Access (RMA), remote procedure calls via Active Messages (AMs),
remote atomic operations, and non-blocking collectives.

GASNet-EX is an evolution of GASNet-1 [6, 15] and includes a
backwards-compatibility layer to enable incremental migration of
current GASNet-1 client software. Compared to GASNet-1, GASNet-
EX provides enhancements needed for modern asynchronous PGAS
models including adjusted interfaces for improved scalability, re-
duced CPU and memory overheads, and improved many-core sup-
port [16]. GASNet-1 has many important clients, including: Stan-
ford’s Legion programming system [5], Cray’s Chapel language [8],
the OpenSHMEM reference implementation [25], the Omni Xcal-
able Compiler [20], and many UPC [9, 18, 19] and CAF/Fortran08 [11,
12, 14] compilers. To this collection, GASNet-EX adds UPC++ [26],
and use of GASNet-EX is being explored by the PaRSEC [24] and
ExaBiome [13] projects. Some of these clients are informing the
direction of GASNet-EX development: features critical to UPC++
are being co-designed, and the GASNet-EX design is influenced by
input from the Stanford Legion and Cray Chapel teams, who are
migrating from GASNet-1 to GASNet-EX.

Some API enhancements made in GASNet-EX include: end-
point naming using (team,rank) (for improved composability),
“immediate mode” injection (to avoid stalls due to backpressure),
explicit handling of local-completion (for improved buffer lifetime),
“Negotiated-Payload” AM (to reduce buffer copying between layers),
non-contiguous point-to-point RMA APIs, atomic operations in dis-
tributed memory (implemented using NIC offload where available),
and non-blocking collectives. Future work enabled by GASNet-EX
API changes include: multiple endpoints and segments (to improve
multi-threading support and to support access to device memory),
and offset-based addressing (for device memory support and im-
proved support of symmetric-heap clients).

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Figure 2: Flood Bandwidth on Cray XC40 (Aries network)

The listing below illustrates some of the changes in the API
since GASNet-1 with the prototype for an RMA put. New types
include gex_Event_t, which is a generalization of the GASNet-1
gasnet_handle_t; gex_TM_t, which denotes a team; gex_Rank_t,
the index of a rank within the team; and gex_Addr_t, which en-
ables virtual-address and offset-based addressing via the same in-
terface. Also shown is the lc_opt argument, which introduces
explicit control over local completion, generalizing the bulk/non-
bulk interfaces of GASNet-1. Adding a new parameter of type
gex_Flags_t provides extensibility and control over various as-
pects of an operation (e.g., selecting optional behaviors such as
offset-based addressing, or passing assertions about the argument
values that can obviate the need for more expensive dynamic check-
ing).

gex_Event_t

gex_RMA_PutNB(gex_TM_t tm, gex_Rank_t rank ,

gex_Addr_t dest_addr , void *src_addr ,

size_t nbytes , gex_Event_t *lc_opt ,

gex_Flags_t flags);

We report the results of RMA flood bandwidth microbenchmarks
on several systems. Fig. 2 shows results for one system: Cori Phase-
I [21], a Haswell-based Cray XC40 at NERSC. This figure is repre-
sentative of the results on all systems measured in that bandwidth
achieved with GASNet-EX RMA saturates faster than MPI-3 RMA,
and reaches the same peak values (or higher).

CONCLUSIONS
GASNet-EX leverages hardware support to portably and efficiently
implement Active Messages and Remote Memory Access (RMA).
UPC++ provides higher-level productivity abstractions appropriate
for PGAS programming such as: one-sided communication (RMA),
remote procedure call, locality-aware APIs for user-defined dis-
tributed objects, and robust support for asynchronous execution
to hide latency. Both libraries are portable beyond HPC centers
and support development on systems ranging from laptops to su-
percomputers. Together, these libraries enable agile, lightweight
communication such as arises in irregular applications, libraries
and frameworks running on exascale systems.

UPC++ and GASNet-EX SC18, November 11–16, 2018, Dallas, TX, USA

ACKNOWLEDGEMENTS
This research was supported in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Ad-
ministration.

This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster. 2001. A Fully Asynchronous

Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal.
Appl. 23 (2001), 15–41. https://doi.org/10.1137/S0895479899358194

[2] John Bachan, Scott B. Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr,
Mathias Jacquelin, Amir Kamil, and Brian van Straalen. 2018. UPC++ Program-
mer’s Guide, v1.0-2018.9.0. Technical Report LBNL-2001180. Lawrence Berkeley
National Laboratory. https://doi.org/10.25344/S49G6V

[3] John Bachan, Scott B. Baden, Dan Bonachea, Paul H. Hargrove, Steven Hofmeyr,
Mathias Jacquelin, Amir Kamil, and Brian van Straalen. 2018. UPC++ Specification,
v1.0 Draft 8. Technical Report LBNL-2001179. Lawrence Berkeley National
Laboratory. https://doi.org/10.25344/S45P4X

[4] John Bachan, Dan Bonachea, Paul H. Hargrove, Steve Hofmeyr, Mathias Jacquelin,
Amir Kamil, Brian van Straalen, and Scott B. Baden. 2017. The UPC++ PGAS
Library for Exascale Computing. In Proceedings of the Second Annual PGAS Ap-
plications Workshop (PAW17). ACM, New York, NY, USA, Article 7, 4 pages.
https://doi.org/10.1145/3144779.3169108

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
expressing locality and independence with logical regions. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC ’12). https://doi.org/10.1109/SC.2012.71

[6] Dan Bonachea and Paul H. Hargrove. 2017. GASNet Specification, v1.8.1. Technical
Report LBNL-2001064. Lawrence Berkeley National Laboratory. https://doi.org/
10.2172/1398512

[7] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. Technical Report LBNL-2001174.
Lawrence Berkeley National Laboratory. https://doi.org/10.25344/S4QP4W To
appear: Languages and Compilers for Parallel Computing (LCPC’18).

[8] David Callahan, Bradford L. Chamberlain, and Hans P. Zima. 2004. The Cascade
High Productivity Language. International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS) (2004), 52–60. https:
//doi.org/10.1109/HIPS.2004.10002

[9] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu, and K. Yelick. 2003. A
Performance Analysis of the Berkeley UPC Compiler. In Proceedings of the 17th
International Conference on Supercomputing (ICS). https://doi.org/10.1145/782814.
782825

[10] DOE Advanced Scientific Computing Research (ASCR). Facilities. https://science.
energy.gov/ascr/facilities.

[11] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. 2004. A Multi-platform Co-Array
Fortran Compiler. In Proc. 13th International Conference on Parallel Architecture
and Compilation Techniques (PACT). https://doi.org/10.1109/PACT.2004.1342539

[12] Deepak Eachempati, Hyoung Joon Jun, and Barbara Chapman. 2010. An Open-
source Compiler and Runtime Implementation for Coarray Fortran. In Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Models
((PGAS’10)). ACM, Article 13, 8 pages. https://doi.org/10.1145/2020373.2020386

[13] Exabiome. Exascale Solutions for Microbiome Analysis. https://sites.google.com/
lbl.gov/exabiome.

[14] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan
Nagle, and Damian Rouson. 2014. OpenCoarrays: Open-source Transport Layers
Supporting Coarray Fortran Compilers. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models (PGAS ’14).
ACM, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/2676870.
2676876

[15] GASNet. home page. http://gasnet.lbl.gov.

[16] Paul H. Hargrove and Dan Bonachea. 2018. GASNet-EX Performance Improvements
Due to Specialization for the Cray Aries Network. Technical Report LBNL-2001134.
Lawrence Berkeley National Laboratory. https://doi.org/10.2172/1430690

[17] Pascal Hénon, Pierre Ramet, and Jean Roman. 2002. PASTIX: a high-performance
parallel direct solver for sparse symmetric positive definite systems. Parallel
Comput. 28, 2 (2002), 301–321. https://doi.org/10.1016/S0167-8191(01)00141-7

[18] Intrepid Technology, Inc. Clang UPC Compiler. http://clangupc.github.io.
[19] Intrepid Technology, Inc. GCC/UPC Compiler. http://www.gccupc.org.
[20] Hitoshi Murai, Masahiro Nakao, Hidetoshi Iwashita, and Mitsuhisa Sato. 2017.

Preliminary Performance Evaluation of Coarray-based Implementation of Fiber
Miniapp Suite Using XcalableMP PGAS Language. In Proceedings of the Second
Annual PGAS Applications Workshop (PAW17). ACM, Article 1, 7 pages. https:
//doi.org/10.1145/3144779.3144780

[21] National Energy Research Scientific Computing Center (NERSC). Cori Haswell
Nodes. http://www.nersc.gov/users/computational-systems/cori/configuration/
cori-phase-i/.

[22] National Energy Research Scientific Computing Center (NERSC). Cori Intel
Xeon Phi (KNL) Nodes. http://www.nersc.gov/users/computational-systems/
cori/configuration/cori-intel-xeon-phi-nodes/.

[23] National Energy Research Scientific Computing Center (NERSC). Edison. http:
//www.nersc.gov/users/computational-systems/edison.

[24] PaRSEC. Parallel Runtime Scheduling and Execution Controller. http://icl.cs.utk.
edu/parsec.

[25] Swaroop Pophale, Ramachandra Nanjegowda, Tony Curtis, Barbara Chapman,
Haoqiang Jin, Stephen Poole, and Jeffery Kuehn. 2012. OpenSHMEM Performance
and Potential: A NPB Experimental Study. In Proceedings of the 6th Conference on
Partitioned Global Address Space Programming Models (PGAS’12). https://www.
osti.gov/biblio/1055092

[26] UPC++. home page. http://upcxx.lbl.gov.
[27] UPC Consortium. 2013. UPC Language and Library Specifications, v1.3. Technical

Report LBNL-6623E. Lawrence Berkeley National Laboratory. https://doi.org/10.
2172/1134233

[28] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. 2014. UPC++: A PGAS
Extension for C++. In IEEE 28th International Parallel and Distributed Processing
Symposium. 1105–1114. https://doi.org/10.1109/IPDPS.2014.115

https://doi.org/10.1137/S0895479899358194
https://doi.org/10.25344/S49G6V
https://doi.org/10.25344/S45P4X
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.2172/1398512
https://doi.org/10.2172/1398512
https://doi.org/10.25344/S4QP4W
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1145/782814.782825
https://doi.org/10.1145/782814.782825
https://science.energy.gov/ascr/facilities
https://science.energy.gov/ascr/facilities
https://doi.org/10.1109/PACT.2004.1342539
https://doi.org/10.1145/2020373.2020386
https://sites.google.com/lbl.gov/exabiome
https://sites.google.com/lbl.gov/exabiome
https://doi.org/10.1145/2676870.2676876
https://doi.org/10.1145/2676870.2676876
http://gasnet.lbl.gov
https://doi.org/10.2172/1430690
https://doi.org/10.1016/S0167-8191(01)00141-7
http://clangupc.github.io
http://www.gccupc.org
https://doi.org/10.1145/3144779.3144780
https://doi.org/10.1145/3144779.3144780
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-phase-i/
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-intel-xeon-phi-nodes/
http://www.nersc.gov/users/computational-systems/cori/configuration/cori-intel-xeon-phi-nodes/
http://www.nersc.gov/users/computational-systems/edison
http://www.nersc.gov/users/computational-systems/edison
http://icl.cs.utk.edu/parsec
http://icl.cs.utk.edu/parsec
https://www.osti.gov/biblio/1055092
https://www.osti.gov/biblio/1055092
http://upcxx.lbl.gov
https://doi.org/10.2172/1134233
https://doi.org/10.2172/1134233
https://doi.org/10.1109/IPDPS.2014.115

	1 UPC++
	2 GASNet-EX
	References

