
2.3.1.14

UPC++	and	GASNet-EX:	PGAS	Support	for	Exascale	Apps	and	Run=mes	
Sco?	B.	Baden	(PI),	Paul	H.	Hargrove	(co-PI),	

Hadia	Ahmed,	John	Bachan,	Dan	Bonachea,	Steve	Hofmeyr,	Mathias	Jacquelin,	Amir	Kamil,	Brian	van	Straalen	

Example of EX interface updates: RMA Put
•  GASNet-1:

 gasnet_handle_t
 gasnet_put_nb(gasnet_node_t node, void *dest_addr,
 void *src_addr, size_t nbytes);

•  GASNet-EX:
 gex_Event_t
 gex_RMA_PutNB(gex_TM_t tm, gex_Rank_t rank, gex_Addr_t dest_addr,
 void *src_addr, size_t nbytes,
 gex_Event_t *lc_opt, gex_Flags_t flags);

•  gex_Event_t return type introduces events to generalize GASNet handles.
•  tm argument adds team (ordered sets of ranks), into which rank indexes.
•  gex_Addr_t	type will enable offset-based addressing via same interface.
•  lc_opt	argument introduces explicit control over local completion, generalizing

the bulk/non-bulk interfaces of GASNet-1.
•  flags	argument provides extensibility. For instance to:

•  Select optional behaviors (e.g., immediate mode and offset-based addressing)
•  Provide assertions regarding arguments (e.g., to streamline the operation)

	

Vector-Indexed-Strided (VIS) Interfaces for Non-Contiguous RMA	
•  Formalizes and generalizes an unofficial extension to GASNet-1
•  Three metadata formats for different scenarios

•  Vector: fully general array of iovec-like (address, length) pairs
•  Indexed: array of addresses and a single length
•  Strided: arbitrary rectangular sections of dense multi-dimensional arrays

•  GASNet-EX adds transposition and reflection capabilities
•  This table shows the speed-up resulting from use of aggressive pack/unpack

optimizations. Each datum is the mean of the bandwidth ratios for a sweep over a
range of transfers representing reasonable inputs to the VIS functions.

GASNet-EX	at	Lawrence	Berkeley	Na=onal	Lab	(h?p://gasnet.lbl.gov)	
•  GASNet-EX: communications middleware to support exascale clients

•  One-sided communication – Remote Memory Access (RMA)
•  Active Messages - remote procedure call
•  Implemented over the native APIs for all networks of interest to DOE

•  GASNet-EX is an evolution of GASNet-1 for exascale
•  Retains GASNet-1’s wide portability (laptops to supercomputers)
•  Provides backwards compatibility with GASNet-1 clients
•  Focus remains on one-sided RMA and Active Messages
•  Reduces CPU and memory overheads
•  Improves many-core and multi-threading support

•  GASNet-1 clients include:
•  Multiple UPC and CAF/Fortran08 compilers
•  Stanford’s Legion Programming System
•  Cray Chapel Language
•  OpenSHMEM Reference Implementation
•  Omni XcalableMP Compiler

•  GASNet-EX clients include:
•  UPC++, Legion, and Cray Chapel
•  PaRSEC and ExaBiome (exploring)

•  GASNet-EX augments and enhances GASNet-1
•  Enhancements address needs of modern asynchronous PGAS models
•  Interfaces adjusted for improved scalability
•  Features critical to UPC++ are being co-designed
•  Using input from Legion and Cray Chapel, who are adopting the new APIs

•  Current enhancements:
•  “Immediate mode” injection to avoid stalls due to back-pressure
•  Explicit handling of local-completion (source buffer lifetime)
•  New AM interfaces, e.g. to reduce buffer copies between layers
•  Vector-Index-Strided for non-contiguous point-to-point RMA
•  Remote Atomics, implemented with NIC offload where available
•  Teams and non-blocking collectives

•  Future enhancements may include:
•  Dependent operations to control ordering of in-flight operations
•  Offset-based addressing
•  Multiple endpoints/segments, e.g. to enhance multithreading support
•  Support for “out-of-segment” remote addresses
•  Communication directly to/from device memory (e.g. GPUDirect)

SYSTEM NETWORK
INDEXED STRIDED VECTOR

GET PUT GET PUT GET PUT
Cori-I Cray Aries 11.68 × 10.06 × 12.55 × 12.63 × 8.83 × 7.69 ×
Theta Cray Aries 10.03 × 7.70 × 11.10 × 9.94 × 7.13 × 5.89 ×
Titan Cray Gemini 7.33 × 7.21 × 8.09 × 8.61 × 5.33 × 5.51 ×
SummitDev Mellanox InfiniBand 5.45 × 5.17 × 5.67 × 5.63 × 4.29 × 4.29 ×
Cetus IBM BG/Q 2.66 × 3.49 × 4.01 × 4.34 × 2.10 × 2.82 ×

Highlights	from	Recent	Work	
Remote Atomics with Cray Aries NIC Offload

•  Implements the Atomic Domains concept (first introduced by UPC 1.3)

•  Domains permit use of NIC offload even when not coherent with CPU
•  Domains are created collectively outside the critical path
•  A Domain has an associated data type and set of allowed operations

•  Domains select the best implementation for the data type and ops
•  e.g. use offload if and only if NIC implements all the requested ops

•  Example: non-blocking atomic fetch-and-add (FADD) on unsigned 64-bit integer
 gex_Event_t ev = // *result = ATOMICALLY(*target += addend)
 gex_AD_OpNB_U64(domain, &result, target_rank, target_address,
 GEX_OP_FADD, addend, 0 /*unused op2*/, flags);

•  flags includes optional behaviors and assertions, such as memory fences
•  GASNet-EX provides a network-independent “reference implementation”

•  Uses Active Messages to perform operations using the target CPU
•  Uses GASNet-Tools for atomicity (inline assembly for numerous CPUs)

•  Specialization for Cray Aries improves performance vs. reference implementation
•  Reduces latency of inter-node FADD from 4.9us to 2.8us
•  Greatly increases throughput under contention

•  The figure above shows throughput of 1 to 8192 processes (64 per node)
performing pipelined FADD of a central counter (measured on ALCF’s Theta).

U
P

IS

G
O

O
D

UPC++	at	Lawrence	Berkeley	Na=onal	Lab		(h?p://upcxx.lbl.gov)	

Case	1:	Easy	Distributed	Hash-Table	via	Func=on	Shipping	and	Futures	

	
	

•  Function shipping via RPC simplifies distributed data-structure design
•  RPC inserts the key metadata at the target
•  Once the RPC completes, an attached callback issues a one-sided

rput to store the value data
•  Benefits:

•  Key insertion and storage allocation handled at the target
•  Asynchronous execution enables communication-computation overlap

// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char> > local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
 return rpc(key % rank_n(), // RPC obtains location for the data
 [key,sz]() -> global_ptr<char> { // lambda invoked by RPC
 global_ptr<char> gptr = new_array<char>(sz);
 local_map[key] = gptr; // insert in local map
 return gptr;
 }).then(// callback executes when RPC completes
 [val,sz](global_ptr<char> loc) -> future<> {
 return rput(val, loc, sz); }); // RMA put the value payload
}

Private address spaces

Global address space

Local task queue
Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

In-bound
function
invocations Outbound

function
invocations Hash table partitions:

a std::unordered_map
per rank

l  UPC++ is a C++11 PGAS library
l  Lightweight, asynchronous, one-sided communication
l  Asynchronous remote function execution (function shipping)
l  Data transfers may be non-contiguous
l  Futures manage asynchrony, enable communication overlap
l  Collectives, teams, remote atomic updates
l  Distributed irregular data structures

l  Easy on-ramp and integration

l  Interoperable with MPI+OpenMP/CUDA etc.
l  Enables incremental development
l  Replace performance-critical sections with lightweight PGAS

l  Latest software release: September 2018
l  Runs on systems from laptops to supercomputers

Efficient weak scaling to 512 nodes (34K procs) on Cori Xeon Phi

D
O

W
N

 IS

G
O

O
D

•  Impact:
•  On average, symPACK delivers a 2.65x speedup over a

state-of-the-art sparse symmetric solver
•  UPC++’s one-sided pull strategy avoids the need for (and cost of)

unexpected messages in MPI.
•  On Extend-add, the increased overlap exposed by UPC++ yields

up to a 1.63x speedup over MPI collective and 3.11x over MPI
message-passing implementations.

Case	2:	Asynchronous	Sparse	Matrix	Solvers	
•  Solvers:

•  symPACK, a direct linear solver for sparse symmetric matrices
•  Extend-add proxy application, a critical step of multifrontal solvers

•  Challenges:
•  Sparse matrix factorization has low computational intensity and

irregular communication
•  Solution:

•  UPC++ function shipping enables efficient pull communication
and event-driven scheduling in symPACK, and better overlap and
performance in the Extend-Add operation.

Cores

Ti
m

e
(s

)

Comparison	of	three	implementa=ons	of	Extend-add	(audikw_1)	
on	NERSC	Cori	Xeon	Phi	–	using	64	out	of	68	cores/node	

Cores

Ti
m

e
(s

)

Strong-scaling	comparison	to	compe=ng	solvers	(Flan_1565)	
on	NERSC	Edison	(24	cores/node)	-	factoriza=on	=me	only	

Cores

© 2018, Lawrence Berkeley National Laboratory

Flood Bandwidth Comparison
•  GASNet-EX RMA versus MPI-3 RMA and

message-passing
•  Three different MPI implementations
•  Two distinct network hardware types
On four systems the performance of GASNet-EX
matches or exceeds that of MPI-3 RMA and
message-passing.
For complete details see:
Bonachea, Dan and Hargrove, Paul H. (2018):
GASNet-EX: A High-Performance, Portable
Communication Library for Exascale.
To appear in: Languages and Compilers for
Parallel Computing (LCPC'18).
https://doi.org/10.25344/S4QP4W
(Intel MPI Benchmarks v2018.1 and GASNet-EX v2018.9.0)

GASNet-EX	RMA	Flood	Bandwidth	versus	MPI-3	RMA	and	Isend/Irecv	

U
P

IS

G
O

O
D

 0

 2

 4

 6

 8

 10

 12

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

SummitDev:
POWER8
InfiniBand

IBM Spectrum MPI
(single rail)B

a
n
d
w

id
th

 (
G

iB
/s

)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 2

 4

 6

 8

 10

 12

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Gomez:
Haswell-EX
InfiniBand

MVAPICH2

B
a
n
d
w

id
th

 (
G

iB
/s

)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-II:
Xeon Phi

Aries
Cray MPI

B
a
n
d
w

id
th

 (
G

iB
/s

)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256 B 512 B 1kiB 2kiB 4kiB 8kiB 16kiB 32kiB 64kiB 128kiB 256kiB 512kiB 1MiB 2MiB 4MiB

Cori-I:
Haswell

Aries
Cray MPI

B
a
n
d
w

id
th

 (
G

iB
/s

)

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Uni-directional Flood Bandwidth across Transfer Sizes

U
P

IS

G
O

O
D

Speed-up resulting from communication aggregation using VIS

This research was supported in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

