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Abstract ductive programming style than explicit message pass-
ing (i.e., MPI [21]), and good performance can still be
The Cray X1 was recently introduced as the first achieved because programmers retain explicit control of
in a new line of parallel systems to combine high- data placement and load balancing. Another virtue of
bandwidth vector processing with an MPP system archi-GAS languages is their versatility; while it has not yet
tecture. Alongside capabilities such as automatic fine-reached the level of MPI's ubiquity, UPC implementa-
grained data parallelism through the use of vector in- tions are now available on a significant number of plat-
structions, the X1 offers hardware support for a transpar- forms, ranging from multiprocessors to the many flavors
ent global-address space (GAS), which makes it an interof networks of workstations.
esting target for GAS languages. In this paper, we de-
scribe our experience with developing a portable, open-
source and high performance compiler for Unified Par-
allel C (UPC), a SPMD global-address space language
extension of ISO C. As part of our implementation ef-
fort, we evaluate the X1's hardware support for GAS lan- _ o . .
fectively exploiting fine-grained data parallelism through

guages and provide empirical performance characteriza- ) Y . .
vector arithmetic instructions, these vector architectures

tions in the context of leveraging features such as vector- tor th tential t h . bet
ization and global pointers for the Berkeley UPC com- offer the potential to narrow the growing gap between

piler. We discuss several difficulties encountered in thesustalned and peak performance for scientific applica-

Cray C compiler which are likely to present challenges t'ofn‘T’ [23]'t With its unique distinction fo dellvirlngdpow—

for many users, especially implementors of libraries and er uhve(;: or prczﬁescs:lng ;’("ff non-tL_mllorm S aret mem-

source-to-source translators. Finally, we analyze the per-Ory ardware, the Lray N particuiar presents an in-
teresting target platform for GAS languages. In addition

formance of our compiler on some benchmark programst olifyi icati i direct d
and show that, while there are some limitations of the o simplifying communication operations as direct reads

current compilation approach, the Berkeley UPC Com- and writes to remote memory locations, the system’s raw

piler uses the X1 network more effectively than MPI or performance is impressive both in terms of communica-
tion (peak memory bandwidth and low communication la-

SHMEM, and generates serial code whose vectorizabilityt I tati tul vector pineli
is comparable to the original C code. ency) as well as computation (powerful vector pipelines).

Furthermore, its efficient hardware support for strided ac-
cesses and scatter/gather memory operations has the po-
tential to substantially reduce overheads associated with
fine-grained remote accesses. Such an array of features

would appear to be quite suitable for languages such as

Global Address Space (GAS) languages have recentl
pac ( ) 'guag ve rec )(JPC that adopt a global address space memory model.
emerged as a promising alternative to the traditional

message passing model for parallel applications. De- This paper describes our experiences in implementing
signed as parallel extensions for popular sequential proand tuning the portable Berkeley UPC Compil&} for
gramming languages, languages such as UES[, [Ti- the Cray X1 system. Berkeley UPC is the first open
tanium P8, 16], and Co-Array Fortrang2] provide bet-  source, portable, and high-performance GAS language
ter programmability through the support of a user-level implementation on the X1, and the lessons we learned
global address space, leading to more flexible remote acfrom this language implementation study should be use-
cesses through language-level one-sided communicatiorful not only for UPC but also the Global Address Space
GAS languages thus offer a more convenient and prodanguage community in general. Our experiences demon-

Meanwhile in the architectural world of supercomput-
ing, parallel vector systems (led by the Earth Simula-
tor [13] and the Cray X1 Systemil{)]) are mounting a
comeback to challenge the dominance that superscalar mi-
croprocessors have established in the last decade. By ef-
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strate the potential of thg X1 ar_chltecture, _but also egposesl;r“gézszgf?ggg Multistreaming Processor (MSP)
areas where more effort is required before it can be viewed 5
as an ideal architecture for UPC and GAS languages il @ ‘

general. While many of the language primitives can be
implemented directly using the hardware global pointer oBEHR

support, the absence of a rich set of user-level commuj

nication primitives, in particular the X1's lack of per- | soounz ggthz‘ . 12.8 GFlops /w 4 SSPs J
operation completion guarantees, limits the opportunitieS 5z griops @ 2 Frieye
for compiler optimizations and the system’s extensiblity
for third-party libraries. Similarly, the heavy reliance on - - - \‘
vectorization to achieve reasonable performance also in-
eppe . . . 1ZSGFIops 128GFIops 128GFIops 128GFIops
creases the difficulties of performance tuning for compiler o ‘
implementors. In particular, each layer in portable com- m% M
pilers such as Berkeley UPC must be tuned to pay careful chmp:m?:ByMBanks
attention to vectorization constraints, which places a rel-
atively heavy burden across the entire software stack. As Cray X1 Node
the hardware and system software matures, we expect to
see performance improvements as well as more flexible
Figure 1. Cray X1 single node: Each MSP contains 4 SSPs
support for portable implementations of GAS languages.
each with 2 vector and 1 scalar unit
The rest of the paper is organized as the follows. Sec-
tions2 and3 describe the Cray X1 system, UPC, and the
Berkeley UPC compiler. Sectichdetails our implemen-

tation of the communication Operations, which SatiSfy the consists of four mu|ti-streaming processors (MSPS) and a
basic requirements for a functioning UPC compiler on thef|at, shared 16GB physical memory. Each MSP in turn
X1. Section$ and6 detail our efforts at tuning the perfor- g composed of four single-streaming processors (SSPs),
mance of the Berkeley UPC compiler for the X1's unique gach with two vector pipelines and one scalar processor.
architecture: the former summarizes our optimizations forThe four SSPs also share a 2MB data “E-Cache”, which
shared memory accesses, while the latter discusses OWelps supply enough memory bandwidth to saturate the
strategy for achieving good serial performanc. Section vector units. As is the case with many vector platforms,
analyzes the impact of the X1's tightly-coupled design on gpplications whose critical paths do not vectorize tend
our portable architecture and on the effectiveness of comtg exhibit poor performance; in addition to operating at
piler communication optimizations. Secti@nevaluates tyice the clock speed, the ability of the vector units to
our compiler’s parallel performance, and finally secti®ns  oyerlap memory operations with computation makes the
and10 conclude the paper with an evaluation of the X1's Cray X1's vector units significantly more powerful than

architectural support for GAS languages. the scalar pipeline. The X1 offers two configurations for
program execution. Explicit parallelism is achieved in the
2 The Cray X1 SSP mode by treating each SSP as a separate processor,

such that the node essentially behaves as a 16-way SMP.
The X1 [1Q] is a supercomputer system developed by The alternative MSP mode maps each execution thread
Cray which combines powerful vector processors with to an MSP, and utilizes compiler-directedilti-streaming
high memory and network interconnect bandwidth. In or- transformations to accomplish automatic parallelization
der to sustain high bandwidth vector processing, the Xlacross the constituent SSP hardware. The multi-streaming
is based on previous MPP Cray designs that emphasizefdrocess divides either vectorized inner loops or unvector-
memory bandwidth, as well as more recent vector con-ized outer loops into four independent segments, and as-
cepts such as multi-streaming and vector caching. Thesigns them to different SSPs to be executed in parallel.
system uses a network interconnect reminiscent of theAn early performance evaluation of the Cray X2 sug-
Cray T3E to connect Cray nodes in order to unite long, gests that many parallel applications can achieve signifi-
latency-tolerant vector computations with the scalability cant performance on the machine, given sufficient porting
to be expected from MPPs. and optimization efforts. The benchmark results reported
Figurelillustrates the architecture of a single Cray X1 in this paper are collected on a four node X1 system at
node, the basic building block of the system. Each nodeCray (a total of 48 SSPs), running Unicos/MP version 2.4
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and Cray C version 5.1.0.5. 3.1 The Berkeley UPC Compiler

Prior to our work, the only UPC implementation for
the X1 was the Cray C compiler's UPC extensions,
which currently support only a subset of the UPC lan-
guage specification. Important missing features include
block cyclic pointersupc _forall  loops, non-collective

UPC (Unified Parallel C) is a parallel extension of the shared memory allocation, and restrictions on the block
C programming language aimed at supporting high per-size of shared arrays. While some of the deferred fea-
formance scientific applications. The language adopts theures merely offer syntactical convenience, many provide
SPMD programming model, such that every thread runsessential functionalities of UPC applications and have no
the same program but keeps its own private local dataeasy workarounds without affecting program behavior.
In addition to each thread’s private address space, UPQrheir exclusion thus severely limits the usefulness of the
provides a shared memory area to facilitate implicit com- Cray UPC compiler, which in our experiments fails to
munication amongst threads, and programmers can crecompile several of the NAS UPC benchmarks. Our goal
ate shared objects through the use of shared type s thus to implement an open-source and portable com-
qualifier or the dynamic shared memory allocation library pjler that performs comparably to Cray UPC and is fully
functions. While a private object may only be accessedcompliant with the latest UPC 1.1.1 specification.
by its owner thread, all threads can read or write objects Figure 2 shows the overall structure of the Berkeley
in the shared address space. Because the shared mempC compiler ], which is divided into three compo-
ory space is logically divided among all threads, from a nents: the UPC-to-C translator, the UPC runtime sys-
thread's perspective the shared space can be further dtem, and the GASNet communication systefh [Dur-
vided into a local shared memory and remote one. Datang the first phase of compilation, the Berkeley UPC com-
located in a thread's local portion of the shared space argiler preprocesses and translates UPC programs into ISO-
said to have “affinity” with the thread, and compilers can compliant C code in a platform-independent manner, with
utilize affinity information to exploit data locality in ap- UPC-related parallel features converted into calls to the
plications to reduce communication overhead. runtime library. The translated C code is then compiled

UPC gives users direct control over shared data place!/Sing the target system’s C compiler and linked to the run-
ment through distributed arrays. When creating a sharediMe system, which performs initialization tasks such as
array, programmers specify a block size in addition to thread generation and shared data allocation. The Berke-
the dimension and element type, and the system uses th{§Y UPC runtime delegates communication operations to
value to distribute the array elements block by block in ath® GASNet communication layer, which provides a uni-
round-robin fashion over all threads. For example, a decform interface for low-level communication primitives on
laration ofshared [2] int ar[10] tells the com- @l networks.
piler to allocate the first two elements af on thread O,

the next two on thread 1, and so on. If the block size E

is omitted the value defaults to one (cyclic layout), while

3 Unified Parallel C

alayout off] or[0] indicates indefinite block size, i.e., Ipmﬂ,rm_

that the entire array should be allocated on a single threac | |independent|  Translator Generated C Code

A pointer-to-shared thus needs three logical fields to fully | Network: Berkeley UPC Runtime System | ComPiler-
independent independent

represent the address of a shared objeaddress,
thread _.id, andphase. Thethread _id indicates

Language-
independent

the thread that the target has affinity to, thedress Network Hardware

field stores some representation of the object’s “local” ad-

dress on the thread, while tiphase field gives the off- Figure 2. Architecture of the Berkeley UPC compiler

set of the target within the current block. Other notable

UPC features includewpc _forall  parallel loop, block We believe this three-layer design has several advan-

transfer library functions, synchronization constructs, andtages. First, because of the choice of C as our intermedi-
a choice between a strict or relaxed memory consistencyte representation, our compiler will be available on plat-
model; consult the UPC language specification for moreforms that have an ISO-compliant C compiler; other cur-
details [L5)]. rently available UPC compilers only support specific sys-



tems. Second, both the UPC runtime system and GASNetlose to the native hardware peak across many systems,
implement a well-defined interface: the runtime offers a while leveraging platform and network-specific features
flexible pointer-to-shared abstraction with the option of (such as RDMA support and/or block transfer engines).
running multiple threads per node and GASNet imple-

ments network-independent Global-Address Space prim_

tives. This two-tier approach can be tailored to move mor

or less functionality into the runtime or GASNet based on Compiler-specific runtime system

how close either layer can target native communication
primitives. In a previous work7], we have validated our
design by showing that, in spite of the modularity used
to support portability, the Berkeley UPC Compiler per- GASNet Core API
forms well on today’s high-performance clusters. How-
ever, our compilation strategy finds an interesting chal-
lenge in the X1, whose compiler and application software
is very tightly integrated with the hardware. The next sec-
tions underline how the major components of our architec-22s€d Core APl is sufficiently general to implement the en-
ture were adapted in order to maintain our goals of bothtré System, but can also be bypassed to implement func-

portability and high performance on the X1 tionality from the Extended API directly on the underlying
network to exploit available hardware support

Figure 3. GASNet communication system: the narrow, AM-

4 Porting the Berkeley UPC Compiler to the

Cray X1 Figure 3 illustrates the basic abstraction stack of the
Berkeley UPC and Titanium compilers over GASNet.
This section describes our initial efforts in porting the The existing GASNet infrastructure greatly simplifies the
Berkeley UPC compiler to the X1. The modular design porting effort for new platforms. Building upon a pro-
of our compiler greatly simplifies the porting process for vided “fill-in-the-blanks” template framework, implemen-
supporting new architectures; generally no changes argors are encouraged to proceed in a two-stage porting pro-
required for the translator, whose code generation is encess. A complete working GASNet implementation can
tirely platform independent, with the exception of a few pe obtained entirely in the first phase by implementing the
general architectural parameters such as register size angtentionally minimalistic but general GASNet Core AP,
the integral type width. The implementation of the com- whose design is based heavily on Active Messadék [
munication operations is the system component which isThe wider and more expressive interface of GASNet, the
generally most sensitive to platform characteristics, andextended API, is already available as a reference imple-
therefore this functionality has been encapsulated entirelynentation written solely in terms of the Core and can be
within the GASNet implementation for each platform. ysed to provide full GASNet functionality over the ported
Consequently, despite the fact the X1's architecture dif-Core. Second, primitives available in the reference imple-
fers substantially from other systems we have targetedmentation of the Extended API can be selectively replaced
we were able to build a working implementation of the with more efficient network primitives offered by the un-
Berkley UPC Compiler on the system in about one week. derlying networking software or hardware. Based on prior
experience in porting GASNet to five other networks, we
4.1 The GASNet Communication Layer have found this approach to be very effective in quickly

obtaining a working conduit and gradually refining it with
The main purpose of GASNet is to provide a portable, more efficient primitives.

language-independent and high-performance communi-

cation interface. Designed primarily as a compilation tar-4.2 Porting GASNet to the X1

get, GASNet incorporates a set of network communica-

tion primitives crafted to provide high levels of perfor-  As a portable communications interface with well-
mance and expressiveness tailored for code generation, idefined semantics, GASNet'’s ability to provide an optimal
contrast to end-user library interfaces such as MPI thaimplementation for a particular platform depends mostly
prioritize other design goals such as interface minimality, on what the target system exposes in terms of network fea-
code readability and universal interoperability. As a re- tures and how these features can be leveraged using exist-
sult, GASNet delivers communication performance verying target software interfaces. Since loosely coupled plat-
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forms are typically based on a some form of messaging GASNet Core, we have identified several deficiencies for
higher-level software layers often have much more con-Extended API primitives -shmemoffers only blocking

trol over initiation and completion of remote memory op- versions of theget operation, lacks some expressiveness
erations than over platforms where global memory readdsn its synchronization mechanisms and presents an ad-
and writes are transparent to the user. In this regard, thelitional source of library call overhead for small mes-
Cray X1 and its transparent global memory support fallssages. More importantly, wheshmemlibrary calls ap-

in the latter category, which constitutes a departure overpear in any loop structure, the Cray C compiler turns off
previous message-based Cray designs. In the previougectorization. This weakens the utility shmemas a
family of Cray MPP designs, the Cray T3D and T3E sys- programming interface for any interesting programming
tems provided application and system-level programmersstyle other than bulk synchronous MPI-style, where com-
with user-level communication primitives. Communica- munication is reduced to moving large amounts of data
tion on the T3D could be performed using three mecha-between processing elements and carrying out computa-
nisms: a prefetch queue for individual loads and storestion exclusively over local data. Obviously, we would like

a memory centrifugdacility for global memory access, to leverage the expressive power of GAS languages and
and a block transfer engine for large asynchronous transthe support for fast remote accesses and global non-unit
fers. With the T3E, these communication mechanisms,stride accesses on the X1, without requiring programmers
as well as extended support for synchronization and colto adopt a clumsy bulk synchronous programming style in
lective operations, were encompassed in general-purposerder to achieve vectorization.

user-level registers (E-register@p]. These systems were
suc_cessful in part because .Of their high performa_nce anozll.z.z Hardware Global Pointers as a GASNet target
their support for programming models characterized by

low cost asynchronous communication enabled by E-n considering another possible target for GASNet, we
registers or lower-level programming interfaces such asmodified the Extended API to take advantage of the prop-
shmenj2€]. Although these systems predate the Berkeleyerties of the X1 global virtual addresses and memory cen-
UPC compiler, their user-level messaging interface wouldtrifuge (illustrated in figures). When global memory is
allow GASNet to exploit much of their functionality for gjjocated on the X1 symmetric heap using a collective
efficient fine-grained control over communication. In con- memory allocation call, the memory segment returned to
trast, the X1 adopts an approach akin to shared memgach caller contains the caller's processing element (PE)
ory platforms whereby communication, whether scalar ornymber in the high-order bits of the pointer representa-
vector, is enabled exclusively through assembly-generate¢on and is mapped at identical virtual memory locations
load/store instructions. As a byproduct of tighter integra- jn each PE’s address space. Since GASNet allocates a
tion of network and processor architectures, this approacisegment on each node at initialization, the segment can
essentially prevents communication software layers frompe gllocated from the symmetric heap and the resulting
controlling the specific parts of communication schedul- segment addresses can be globally published to GASNet

ing that involve initiation and synchronization. clients and used without indirection or translation. Most
importantly, by allowing GASNet put/get operations to be
4.2.1 shmemas a GASNet target fully inlined, this newer version of the Extended API side-

steps the limitation the vectorizer imposes on the pres-
As the first stage of the GASNet porting strategy, we haveence of function or library calls. We believe that this re-
targeted theshmenctommunication interface as a general fined approach is reasonable for our portable implemen-
mechanism for implementing the GASNet Core. After tation, as it tailors the implementation without changing
sufficiently experimenting with the system, we were able our interface and gains the most from our mismatch with
to complete the Core and use GASNet’s Extended referthe Cray compilation strategy. Although we were able to
ence to obtain a complete GASNet X1 implementation overcome some of the constraints imposed by the vector-
in a matter of days. When specifically tuning the X1 izer, we could not sufficiently integrate GASNet and X1
for the Extended portion of the GASNet API, we again communication to our satisfaction due to the impossibil-
considered theshmeminterface as a potential target, as ity of inlining of assembly with high level C code. GAS-
Cray has been promoting the interface as being the bedilet's current major clients are source-to-source GAS lan-
communication interface for low latency and high band- guage translators and do not participate in any platform-
width communication24]. While we have founddhmem  specific code generation and are thus dependent on the
useful with regards to quick prototyping for a functional amount of functionality that existing compilation and sys-

5



v 14 14

'g 13 Shmem 3 13 Shmem

o \, GASNet GASNet

& 129 e - 124N\

g 11 Tu

S 10 g 10

E 9 g 9

g s 7

o 7 € 6

0]

o ° o 5

© 5 c

& 4 -8 4

g 3 5 3

- - [ 4(]-',) 2 \\ //

L ) N J/ O 1 \o —

- \ / 0

3 T T T T T T T T T T 1

a O ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 2 4 8 16 32 64 128 256 512 1024 2048
1 2 4 8 16 32 64 128 256 512 1024 2048 RMW  Scalar Vector beopy()

RMW  Scalar Vector beopy() \ I | 1
[ I |

Me:ssage Size (blytes) Message Size (bytes)
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tem software infrastructures are willing to expose. We icantly that of MPI and trims roughly two microseconds
expect other third-party software packages that integrate aff shmenfor latency-sensitive operations. The perfor-
fair amount of complexity in their runtime and communi- mance improvement over shmem is primarily due to the
cation components to suffer from this limitation. removal of address translation and library call overheads
from the critical path. For larger messages, which were

Thread 1 ] Thread 3 established to start at 80 bytes, thwopy() library call
ST 2L ST Heapfﬂ : provided by Cray provided the best performance.
N “PE3
0;(\0913___00 5 Tuning the UPC Runtime System for the X1
PE2 - _ _ _ _ .
Having described our implementation of an efficient
WQ_("?--:Q? communication layer for GAS languages on the X1, we
Thread 0 &P\._E 1 Thread 2 now discuss our strategy for implementing UPC'’s shared
memory accesses. Compared to regular C pointers, a
°*°9.‘J,:j°° generic UPC pointer-to-shared logically contains two ad-
PR ditional thread id  and phase fields. Both fields
0x0010...00- are generally updated while manipulating a pointer-to-
shared, making such operations inevitably slower than lo-

cal pointer arithmetic. To overcome this overhead, the
Figure 6. The Cray X1 memory centrifuge Berkeley UPC Compiler implements an optimization for
the important special case of “phaseless” pointers, namely
The performance results of our tuning efforts are com-those with a cyclic distribution where the block size is
pared to other X1-specific communication libraries in fig- 1 element (and the phase field is always zero) or an in-
ures4 and5 for individual one-sided put and get opera- definitely blocked distribution where the pointer always
tions. Since puts are translated into store instructions, thdnas affinity to a single thread (and the phase is defined to
put message gap corresponds to the amount of time duibe zero). Cyclic and indefinite pointers are thus “phase-
ing which the processor is tied up injecting each globalless”, an important static property that allows our com-
store into the network. Furthermore, the get operationspiler to generate significantly more efficient pointer ma-
correspond to blocking library calls undeshmem but nipulation arithmetic for these types. Experimental re-
are compiled to simple assembly load instructions undersults [7] show this approach to be effective in improving
GASNet, which gives the processor more opportunities tothe performance of pointer-to-shared arithmetic, remov-
overlap outstanding loads in its load queue. Aside froming 50% of the overhead from cyclic pointer arithmetic
1-byte sized messages that necessitate read-modify-writand making indefinite pointers almost as fast as regular C
operations, that the GASNet performance exceeds signifpointers for pointer-integer addition.
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Berkeley UPC pointer-to—shared (optional phase) ory access primitives to exclude constructs that could in-
‘ H ‘_ terfere with vectorization. All function calls to the run-
Phase Thread Address time Whlc_h occur in cr|t|ca_l paths are_ either inlined or re-
Crav X1 Global Point placed with macros specific to runtime or GASNet op-
ray obal Fointers erations, where GASNet translates the common case of

| 000000 . 4/8 byte transfers into pointer assignments and derefer-

PE (Thread) Address ences. Since the runtime supports running UPC threads

over hierarchical node configurations, such as clusters of

Figure 7. Cray global pointer and Berkeley UPC pointer-to- SMPs, it is also responsible for translating operations on
shared representations a pointer-to-shared’s thread affinity into local or remote

accesses. Fortunately, the infrastructure of the runtime
allows the runtime cost for determining local or remote

5.1 Pointer-to-shared representation for the Cray X1 aﬁlnlty to be eliminated entirEIy for plathI’mS such as the
X1.

Given the success of our phaseless pointer optimiza- An interesting issue for vectorizing shared memory ac-
tion, we naturally want to exploit some of the proper- cesses arises in implementing blocking put operations,
ties common to our pointer representation and X1 globalwhose semantics require that the value being stored be
pointers. The first step in tuning UPC’s shared mem-completely written to the destination address prior to re-
ory accesses is to ensure that the pointer-to-shared regurning. The Cray X1, however, does not provide hard-
resentation deviates from the Cray X1's global pointersware support that polls for the completion of remote
as little as possible. For multi-node applications, Cray’s writes, and the only alternative for mimicking this behav-
notion of processing elements matches exactly that ofiOr is to issue a global memory barrier that enforces global
UPC threads, whereby each thread is given a distincordering of all prior references before all subsequent ref-
address space where the Cray symmetric heap can berences. Not only is the global barrier overkill when all
used to provide per-thread UPC global shared and locathat is needed is the guarantee of the completion of a sin-
heaps. As previously explained, the UPC thread id or vir-gle access, but the presence of such a barrier immediately
tual PE number can easily be extracted from each Craynhibits all automatic vectorization of the enclosing code.
global virtual address, which allows a different represen-Our solution is to take advantage of UPC's relaxed consis-
tation of UPC phaseless pointers to match exactly thatency model to eliminate altogether the barrier for relaxed
of Cray global pointers. This approach eliminates thewrites. UPC supports both a strict and a relaxed memory
overhead of a pointer translation step, and additionallymodel, and relaxed shared memory accesses can be freely
allows the Cray C compiler to optimize shared accessegeordered as long as local data dependencies are still pre-
to cyclically and indefinitely distributed data as if they served. Since the Cray X1 maintains the program order
were regular C pointer dereferences. Generic pointersfor two scalar references to overlapping locations, correct
to-shared present more obstacles, as UPC semantics ré2cal data dependencies will be maintained, and there is
quire that phase information can be extracted from arbi-therefore no need for explicit instructions to enforce the
trary pointers-to-shared to permit easy indexing into thecompletion of a put operation. This allows the Cray C
beginning of a block. The phase field is thus an intrin- compiler to freely vectorize scalar memory references and
sic component of pointers to block-cyclically distributed schedule synchronizations as necessary. While strict ac-
shared data, and must be explicitly stored in the pointercesses require stronger ordering guarantees and thus do
construct. Using a few additional steps, such as storing10t benefit from this optimization, they occur with much
heap addresses as offsets instead of full virtual addressel§wer frequencies and are much less performance-critical.
the anticipated additional overhead for pointer-to-shared
arithmetic is minimized. The representations for phased5.3 Scalar Performance Microbenchmarks
and phaseless pointers-to-shared as well as Cray global

pointers are shown in figuré In order to examine the execution overheads of the sys-
tem, we measured the scalar overhead of various UPC
5.2 Vectorizing Shared Memory Accesses shared memory operations for both the Berkeley UPC and

Cray UPC compilers. The numbers reported here repre-
Once the appropriate representations for pointer-to-sent an upper bound on communication overhead for ap-
shared were chosen, we carefully tuned the shared menplications whose fine-grained remote accesses could not
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be vectorized. Figur8 presents the execution time of the 6.1 Implementation Approach
pointer-to-shared manipulation functions, while Fig@re
presents the respective memory access time. Our goal is to evaluate the serial performance of the
As the results show, the Berkeley UPC compiler offers Berkeley UPC Compiler, concentrating on its ability to
competitive performance on pointer-to-shared arithmetic;maintain the vectorizability of the sequential portion of
block cyclic (generic) pointers, in particular, demonstrate the program. With full optimizations enabled, the Cray C
overhead comparable to that of cyclic pointers, indicatingcompiler P] performs automatic vectorization on expres-
there is little performance incentive for Cray UPC to omit sions inside a loop that it detects to be free of cycles of
support for block cyclic pointers. The execution time of dependences, after applying vectorization-enabling trans-
UPC shared remote accesses is very close to GASNet'formations such as inlining, loop splitting, and loop in-
get/put latencies, signifying the overhead incurred by theterchange. The compiler also vectorizes certain special
runtime layer is very low. A substantial difference in recurrences such as reduction and scatter/gather. Cray C
performance is also observed between blocking and nonprovides two program level techniques to assist the com-
blocking remote puts, which can be attributed to the costpiler’s alias and dependence analyssstrict point-
of the global memory barrier that is included with each ers and the pragmas that declare a loop to be free of vector
blocking put operation, but can be amortized over manydependences or recurrences between array accesses. As
non-blocking put operations. such, our strategy is to keep the translated output as syn-
tactically similar as possible to the original source. The
level of the intermediate representation is kept sufficiently
high such that C loops are preserved in their original form.
Similarly, array expressions are recognized and handled

The popular GAS languages are designed as paralspecially by the translator, both to allow for more aggres-
lel extensions of sequential programming languages, an@ive transformations by its optimizer and to provide the
UPC is no exception; a thread’s local computation in its C compiler with more precise information. Multidimen-
private address space is generally written in language Vergaional arrays have their index expressions linearized to
similar to ordinary C code, and therefore uniprocessor exbehave like one dimensional arrays, and require an ad-
ecution time is an important criteria in evaluating a UPC ditional cast to the appropriate pointer type on the array
compiler’s performancelfd]. From previous workT] we variable. As the Berkeley UPC Compiler is compliant to
have discovered that despite a source-to-source translatioiie ISO C99 standard], it already supportgestrict -
from UPC to C, our compiler still delivers good serial per- qualified pointers, and source level vectorization pragmas
formance on conventional superscalar architectures. Thé@re accepted by the translator and appear unchanged in the
dramatically different architectural approach that the Craysame relative location in the generated C output. We are
X1 adopts, however, challenges this observation by mak-2lso currently implementing optimizations in the transla-
ing vectorization the dominant factor for achieving high tor that will identify vectorizable loops and automatically
performance. Although our translator preserves the segenerate the appropriate pragmas in the output.
mantics of the sequential portions of the program, it is
infeasible to expect the translated output to be syntacti6.2 Livermore Kernels
cally identical to the program source, due to optimizations
performed by the translator and the lack of a one-to-one We chose the C version of the Livermore Kernél§][
mapping between its intermediate representation and théo evaluate the serial performance of our compiler. The
C language. Furthermore, the Cray C compiler’s vector-Livermore Loops consist of 24 sequential computation
izier is highly sensitive to changes in inner loop expres-loops extracted from common scientific applications, and
sions; our experiments have identified several constructshould closely reflect the sequential computational perfor-
that tend to inhibit a loop’s vectorization, such as func- mance offered by our compiler. In particular, the X1's
tion calls, type casts, the address-of operator, and accesgliance on the vector unit to achieve both fast computa-
to global variables in the presence of pointer arithmetic.tion and high memory bandwidth means that application
One important topic in optimizing UPC application per- performance will often hinge on whether its main com-
formance for the Cray X1 thus involves investigating if putation loops could be efficiently vectorized. In this test
our code generation process can be extended to minimizeve do not supply any vectorization hints with pragmas, as
interferences with the C compiler’s ability to automati- our goal is to test if the translation process interferes with
cally vectorize application code. Cray C’s automatic vectorization. Talklgresents the ag-

6 Sequential Performance
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Geo. Mean| Avg. Rate | Har. Mean| Max | Min
C 160 738 59.4 6232 | 8.9
UPC | 115 408 47.6 4495 | 5.1

Table 1. Aggregate performance of the Livermore Loops (in

MFLOPS)

gregate performance for both the original C source and th
translated output with theD3 flag, while Figurel0 dis-
plays the normalized performance of the individual ker-

nels.
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largest performance gap, and is the only benchmark where
our compiler could not preserve the vectorizability of the
original loop. The anomaly can be attributed to the lin-
earizing of several three dimensional array accesses in the
translated code, which confuses the Cray C compiler into
identifying non-existing recurrences between them. We
are investigating the issue by preserving multidimensional
array accesses in their original form. Another notable dif-
ference comes from Kernel 21, which performs dvaa
matrix multiplication; although the translated code is also
vectorizable, Cray C recognizes this special pattern in the
original code and applies loop interchange and unrolling
to further enhance its performance. Since the translated
output exhibits similar performance to the C code for most
of the kernels, we thus expect the Berkeley UPC compiler
to offer competitive serial performance on a vector plat-
form like the X1. Finally, we note that Cray C has failed
to vectorize a substantial number of the benchmarks, even
though many of them do not contain any vector depen-
dences. This suggests that automatic vectorization alone
is not sufficient for good absolute computational perfor-
mance due to the inherent limitations of static analysis —
é'n general, vectorization directives, code reorganizations,
and algorithm changes may all be required for achiev-
ing good performance when porting applications to the
X1. Furthermore, some algorithms are inherently not
amenable to vectorization, and applications whose perfor-

The aggr.egate data s_eem to |mpl>/ that the BerkeIfeymance hinges on such algorithms are unlikely to ever per-
UPC Compiler’s translation process incurs a substantlalform well on the machine

overhead; average rate is decreased by nearly one half,
while the geometric mean, a more accurate indicator of
performance, also goes down by 30%. A closer examina-
tion of the individual benchmarks, however, reveals that
most of the performance degradation can be attributed
to a small subset of the kernels. Kernel 8 results in the



7 Potential for UPC Parallel Compiler Opti- to evaluate the impact of a shared memory programming
mizations paradigm for UPC application performance on the Cray
X1; if the X1's transparent global loads and stores can

In an earlier paper7], we identified several compiler efficiently support fine-grained accesses to remote data,

optimizations that prove valuable for implementing GAS programmers can enjoy both the simplicity offered by a

languages such as UPC in a distributed memory environshared memory programming style and performance com-

ment: communication and computation overlap, prefetch-parable to coarse-grained bulk communication.

ing of remote data, message aggregation, and privatization

of local shared data. The performance characteristics of NAS CG Performance

the Cray X1 that we have observed thus far, however, raise 120

guestions about the appropriateness of these optimization: 100 - %

for this machine, whose tightly-coupled architecture de- 3 % v_ BUPC (OpenP
livers impressive peak performance but also limits the op- £ 80 % ’j g EUPC (MP1 Stye)
portunities for GAS language implementations to exploit S 60 % ; o BIMPI Fortran
alternative techniques in reducing communication over- & % ; :i Z

head. In this section, we evaluate the effectiveness of two & 40 % ; - =

important optimization techniques on the Cray X1. = 20 | Z : z i

7.1 Message Coalescing and Aggregation

N

4 8 12

The widely used LogGP network performance Threads (SSP mode, two nodes)

model [l] speaks volumes about the effectiveness 01:Figure 11. NAS CG (class B): fine-grained vs. coarse-
message coalescing and aggregation; by combining sma&]rained
puts and gets into large messages, not only does one

save on the per-message startup overheads, but one canty answer this question, we compared the perfor-

also exploit the higher bandwidth offered by modem mance of two versions of the NAS conjugate gradient
high-performance networks for large messages. The moSicG) henchmark fromd. The first is derived from an
common r.eahzgtlo_n' of this pptlmlzatlon, calledessage OpenMP-style shared memory implementation, with the
vectorization significantly improves the performance eyception that the column vector is replicated to avoid re-
pf a flne-g.ralned'loop by fetching aII'the remOte'Va“J_eS peated random indexing into it. The second version is
it needs in a single bulk transfer instead of ISSUING \yritten in the bulk-synchronous style of one-sided coarse-
fl-ne.-gralned .read operations in every iteration. Othergrained communication, through the useipt _-memget
similar techniques include copying an entire object when|jpyary calls. The sparse matrix-vector multiplication in
accessing its fields, and packing together messages bourghih versions was tuned to ensure that the inner loops
for the same destination node. were vectorized. Both are compiled in SSP mode and ex-
Our b_enchmarklng of the Cray X1 S memory and com- ecyted such that the UPC threads are evenly distributed
munication performance, however, raises doubt about th%mong the two nodes. Performance results from the MPI
relevance of converting fine-grained accesses into coarse-qrtran version of the benchmark were also included for
grained bulk transfers on this platform. If the latency and comparisoh. As Figure1l shows, performance of the
bandwidth of a remote memory access are comparable t@hared memory style version lags behind that of code with
those of a local access, it may not make sense {0 bulloarse-grained parallelism. Much of the performance ad-
fetch remote data into local buffers, since one still hasvantage offered by the coarse-grained version can be at-
to pay for the overhead of moving data from the main yipyted to a tighter inner loop for the matrix-vector prod-
memory into cache. Furthermore, hardware support fofyct, as the boundary information for each thread can be
vectorized loads can alleviate much of the communica-precomputed due to explicit partitioning of the sparse ma-
tion overhead for small messages. On the other hand, if gy |n summary, although the Cray X1's tightly-coupled

remote shared object is to be referenced multiple times, ishared memory interface lowers the communication over-
might be beneficial to copy the object locally (as permit- neaq, a coarse-grained communication pattern is likely to

ted by UPC's relaxed consistency model) so that its valuesjj| outperform a fine-grained access pattern, even for ap-
resides in cacheable local memory, because X1 nodes do

not cache remote memory locations. Essentially, we seek 'The MPI Fortran code only works for threads in powers of 2.
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plications with irregular and dynamic parallelism. This completion, taking advantage of hardware memory order-
also suggests that UPC'’s hybrid programming model caning guarantees on scalar conflicting accesses. However,
be well-suited for the Cray X1; fine-grained accessesthis code generation strategy hinges on the automatic vec-
through pointers-to-shared can deliver acceptable perfortorizor's ability to vectorize these fine-grained writes in
mance if they can be vectorized, while performance crit-the inner loops in order to achieve efficient communica-
ical sections of the code can be further optimized into ation.

bulk synchronous programming style. This heavy reliance on vectorization to effectively uti-
lize the high memory bandwidth is a major reason the
7.2 Communication/Computation Overlap Cray X1 can achieve a high percentage of the peak perfor-

mance, but imposes unfortunate limitations for portable

Compiler-controlled overlapping of communication parallel language compilers or libraries seeking to exer-
and computation is a crucial optimization for parallel pro- cise detailed control over communication optimizations.
grams on conventional distributed-memory systems, as iCompiler and library developers have no direct control of
can effectively hide communication overhead by keepingan application’s parallel performance, other than to apply
the processor busy with independent local computationtransformations that result in the most vectorization; our
while waiting for remote data to arrive. This capability experiences with UPC benchmarks suggest that vectoriza-
is especially relevant for UPC programs; unlike other par-tion directives and code modifications are generally nec-
allel programming paradigms such as MPI or Split@]] essary for good performance. While the amount of reengi-
UPC currently offers no non-blocking communication op- neering required for vectorization will likely decrease as
erations at the language level and instead expects conmfCray’s compiler matures, a fundamental problem is that C
pilers to perform such optimizations automatically. The makes a poor compilation target for vectorization, due to
straightforward approach to applying this transformation the lack of language-level vector operations and compli-
is to convert one-sided blocking get/put operations into ancations introduced with pointer aliasing. Portable imple-
initiation call and a corresponding synchronization call, mentations for Fortran-based GAS languages such as Co-
then perform code motion to separate the two as far ag\rray Fortran B] will likely fare better on the X1, due to
possible while inserting independent computation or com-the relative ease in vectorizing Fortran 90 code. However,
munication code in between. Several studi2g [L7, 6] programs with distributed pointer-based data structures
have proposed global communication scheduling tech-are unlikely to benefit from vectorization at all, whereas
niques that attempt to find an optimal arrangement for allcompiler-controlled data prefetching transformations us-
non-blocking memory accesses. Other variants of this oping split-phase operations could be an effective approach.
timization such as message strip mini2gd][and software
prefetching 18] are also useful in reducing an applica- 8 Parallel Performance
tion’s communication latencies.

The Cray X1's choice of hiding the messaging layer The NAS Multigrid (MG) benchmark was used to eval-
and instead relying on vectorization for communication uate our compiler’s parallel performance, as the program
performance, however, makes it a less-than-ideal targetontains a good balance of computation and communi-
for GAS language implementations that wish to overlap cation. Running in both SSP and MSP mode, we com-
communication and computation. As Sectid2 men-  pared two configurations: UPC compiled with Berkeley
tions, the Cray X1 offers only a load/store based inter-UPC versus Fortran MPI with Cray Fortran. The Cray
face for remote accesses. While limited overlapping be-C compiler fails to automatically vectorize the compu-
tween scalar loads may be achieved with code schedultation loops in UPC code, and we had to explicitly in-
ing to exploit instruction-level parallelism, such architec- sert pragmas to enable vectorization and multistreaming.
tural level optimizations are inaccessible for portable im- As Figurel12 shows, both UPC and MPI Fortran perform
plementations that wish to avoid direct generation of as-well in the absolute sense with performance in the giga-
sembly code. The X1 ISA also provides limited software flops range. This result is expected, as both the UPC and
prefetching support with a scalar data prefetch instruction,MPI version use coarse-grained communication, and their
but due to the lack of inline assembly support portable im-computation code is very similar. A more interesting com-
plementations again cannot access the feature. Stores aparison is between the relative performance of the MSP
inherently non-blocking, and as mentioned in Secipn and SSP configurations; in the MSP mode Cray compilers
we pipeline outstanding relaxed scalar puts and eliminatedetermine (with help from programmer annotations) how
the individual synchronization calls that block for their to distribute loop iterations among the four SSPs, while
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the SSP mode introduces more parallelism at the prograntween SSP and MSP mode, as the benchmark contains no
level by mapping application threads to each individual loops that can profit from multi-streaming. As Figur@
SSP. The measured performance of one MSP is approxshows, Berkeley UPC achieves similar performance to
imately three times of that of a single SSP while it usesMPI, with both scaling well for inter-node communica-
four times the amount of hardware, which would seem totions. In terms of absolute performance, however, both
suggest that the SSP mode makes more efficient use ofersions are quite inefficient, achieving only 1% of peak
the architecture. Performance data from executing moreerformance on the X1. This is due to the fact that loops in
than four SSPs on the same node, however, contradictthe benchmark have real recurrences and thus do not ben-
this hypothesis. Regardless of the programming modekfit from vectorization, but instead must be executed on
used, a significant performance degradation was observethe slower scalar processor. This supports our argument
when scaling from 4 to 8 threads under SSP mode. Ouiin Section7.2that questions the elimination of split-phase
investigation reveals the cause to be increased cache misemote gets from the X1; whereas vectorization has failed
traffic in the two-way associative E-cache shared by theto optimize the IS benchmark, split-phase operators could
four SSPs in an MSP. The X1 currently does not grantstill be used to convert the remote bulk transfers into non-
users control of SSP placement across the MSPs unddslocking operations and overlap the communication time
SSP mode, and the scheduler attempts to allocate appliwith independent computation.

cation threads to all four SSPs in the same MSP. Four

independent threads now share a two-way set associativ@ Analysis

cache P4], and due to the SPMD model all have the same

memory layout; as the four processors execute in paral- The X1 is, at least on the surface, an ideal machine for
lel, the private objects owned by different threads map toGAS languages, because the global memory operations
the same cache entry due to identical offsets in virtual ad-are directly supported in hardware. We found several fea-
dress space, resulting in a significant increase in cacheures of the X1 to be challenging for our compilation ap-
misses from conflict interferences for memory intensive proach, and we believe this experience may be useful for
benchmarks. The MSP mode, on the other hand, is nothe designers of future GAS language compilers and sys-
susceptible to this phenomenon, as there is only one protem architects.

cess image (and hence one copy of the private objects) per

MSP/E-cache. e Heavy reliance on vectorization: The performance

gap between scalar and vector code is dramatic, due
to the 4x factor in clock rate and 2x factor in avail-
able functional unit parallelism. Both a faster scalar
processor and a more powerful vectorizing compiler
would help address this issue. The use of vectoriza-
tion to mask communication means that, even if the
scalar processor were faster, vectorization would still
be critical for communication overlap.

In our performance study we next used the NAS inte-
ger sort (IS) kernel, a benchmark written in a bulk syn-
chronous style with high communication bandwidth re-
guirements. A UPC version of the benchmark compiled
with Berkeley UPC was compared against another version
written with MP1 in C. Both versions were compiled with
full optimizations enabled, and we do not distinguish be-
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Applications whose main computation loops contain added complexity in pointer arithmetic. A 4-way set
true recurrences (e.g., NAS IS) run very inefficiently associative E-cache would have been a better design
because they do not benefit from the computational match to the 4 SSPs sharing the cache.

power and memory bandwidth offered by the vector

pipelines, which are essentially wasted. The C com-10 Conclusions

piler’s ability to automatically identify candidates

for vectorization could also be further improved, as  we have described our implementation of the Berkeley
demonstrated by the Livermore loop results and theypC Compiler on the Cray X1 architecture. We showed
fact that we had to manually insert multiple pragma that the Berkeley compiler performs comparably to the
directives to achieve acceptable performance on ouicray UPC compiler, even though the Berkeley compiler
parallel benchmarks. supports the entire UPC language specification, while the
Cray compiler omits support for some UPC language fea-

to avoid caching remote data matches UPC's affin_tures. One of the key features currently missing from Cray
ity model quite well, and allows for a simpler hard- UPC support for arbitrary blocked cyclic data layouts. We
ware design and fa’ster remote access times — hOW[1ave shown that static typing information can be used to
ever this mandates more careful attention to thespecialize the generation of pointer arithmetic for the im-
data access locality pattern. The hardware pro_portant special case of phaseless pointers, ensuring that
vides fast communication between memory and reg_programmers only pay for the generality of blocked-cyclic
isters, but no direct support for memory to mem- pointers-to-shared when they are actually used in the ap-
ory or;erations which are important for non-blocking plication. As a concession to portability and compiler de-
bqu-synchronéaus communication. While the reg- velopment time, the Berkeley compiler generates C, rather
ister level operations are powerfl'JI in tightly inte- than native assembly, and relies on the vendor compiler to

grated communication and computation code, theyp?rzo;mcmozt sfern;I Op:'m'i;"t'i(ljnrs' ﬂS unr|c\)/r|3|tng3ilz, the g\f/nll
consume critical register resources and provide lim-'at€ code from our complier often vectorizes as we

ited forms of synchronization. For remote loads, the as the input code, which validates our approach. There are

T . . some remaining issues, such as improving the automatic
synchronization is automatic when a successive op- 9 ’ P 9

eration accesses the register, but for remote store Jvectorization of translated 3D array accesses, that require

explicit synchronization may be needed. The X1 ar- moore wgrk. hmarks d hat the X1’ hi
chitecture provides only a single heavyweight syn- ur benchmarks demonstrate that the A1 architec-

chronization mechanisnggyng to wait for the com- Lural g||0tt;al| a(ilj%ress space support is u_sed m?jstleﬁect_lvely
pletion of all outstanding remote writes, and lacks y a giobal address space programming mode that |_nte-
fine-grained forms of synchronization which could grates communication and computation. The one-sided

admit more general forms of communication pipelin- put/get model inshmemis significantly faster than the
ing. The addition of memory-to-memory operations two-sided MPI interface, however the use of direct loads

would provide additional flexibility in code genera- and stores we leverage in GASNet is faster still. We built

tion, especially if they were combined with flexible an .implementation of our GASNet layer starting V\_/ith_the
synchronization primitives to synchronize on sets of active message-based Core API, whose generality is ex-

outstanding operations. Although memory-to-cachepIOited to provide a high-performance implementation of

operations (such as prefetches) have some advant-he more challenging features of UPC, such as the abil-

tages in enabling prefetching optimizations, we be- ity to non-collectively allocate remote memory. The user

lieve that the added complexity currently required to goes not tan for t:ns generality thfn It 'S rt]r?t ne(tadeéj,d
exploit this functionality from the C level is probably ecause the remote memory operations In Ihe extende
not justified. GASNet interface are implemented as macros that trans-

late to direct loads and stores.

Cache structure: The mapping algorithm in the A remaining open issue is the vectorization of code
shared E-cache within an MSP makes it difficult to that mixes communication and computation. The re-
obtain high performance in SSP mode, due to theliance on vectorization in the X1, not only for compu-
high likelihood of cache conflicts between symmet- tational performance but also to overlap remote access
ric data objects associated with each SSP thread. Wéimes, means that vectorization of communication code
believe a software workaround may be possible byis critical. For programs with fine-grained irregular ac-
staggering allocations in memory, at the cost of somecesses, the vector instruction set supports indexed loads

Limited forms of communication: Cray’s decision
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and stores (scatter/gather), yet the Cray compiler will not [2]
vectorize loops that contain function calls (most notably [3]
including calls toshmenh nor does it support inline as-
sembly instructions. This limits our ability to generate
the type of mixed communication and computation code
that would most effectively use the hardware. We be- 4]
lieve this is an issue for application-level library efforts,

not just our own source-to-source compiler strategy, be- 5
cause scientific libraries are often written with separate
modules and runtime phases for communication and com-g
putation. A strategy for annotating or rewriting the sepa-
rate communication and computation code to enable vec-
torization may perform reasonably well, but will miss the
opportunity to take advantage of Cray’s tight integration [7]
of the network and the processor, in which the basic com-
munication mechanism is a transfer between local regis-
ters and remote memory. In one of these phased, bulk- 8
synchronous programs, data will flow from remote mem-
ory to the local vector registers and then to local mem-
ory during communication, and from local memory back

to registers when that data is needed during computation.[9]
Cray compiler support for inline assembly, interprocedu-
ral compiler analysis, or at least recognition of #iemem
calls would all help address this issue.

On balance, our layered approach to compiler design
has proven quite effective across a wide range of archi-
tectures. GASNet has a carefully designed API which is
used in generating code for Titanium as well as UPC, and[12
we are currently extending it to include strided and scat-
ter/gather accesses that are important for enabling various
parallel compiler optimizations and supporting Co-Array [13]
Fortran. A key design point has been the use of macrogi4
and inline functions for simple GASNet functions such
that despite API abstraction layering, accesses to remote
values translate directly to loads and stores on machine§L5]
that support direct remote access. Our UPC runtime layer
now contains three different UPC pointer-to-shared rep-[16]
resentations, including one designed specifically to match
the memory layout on the X1. We believe that both the [17]
pointer and GASNet work will be useful on other archi-
tectures with similar memory layout and access charac-
teristics (specifically including the SGI Altix), and that g
our analysis of the architectural support provided by the
X1 will be useful in the design of future architectures in-
tended to support GAS languages.

(10]

(19]
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